This paper is devoted to the design of a novel Electromagnetic Band Gap (EBG) circularly polarized slot-patch antenna in multilayered configuration. The operating frequency band can be controlled via the disk radius and adjusting the slit lengths. An arrangement combining the circular slot-patch antenna design and feeding sources included are considered is necessary. Due to the exisiting of two feeding points, Position of both feeding points will permit Right-hand and Left-hand circular polarization operations. Thickness of substrate is chosen to reduce the spurious surface wave and width. The same technique will be used for the EBG cirlcularly polarized circular slot-patch antenna network and carry two benefits (such as improvement of bandwidth, beamforming, creating zero radiation beams) and filtering characteristics of the resonator (spatial filtering, increased directivity, misalignment) due to the resonant structure itself. The analysis provided will confirm successfully the various proposed structures and interest occupied by these types of antenna. Two approaches, one introduced by one layered Circularly-Polarized Patch-Slot antenna design with some changes in material configuration and the other produced by multilayered structures with different dielectric constants in the EBG resonator, are simultaneously used as key controllers of directivity enhancement.
Due to the practical importance and difficulties associated with their closed form solutions, the experimental and computational study of periodic planar multilayered structures, such as FSS in multilayered configuration and Multilayered Planar antennas array, are in complementary progress. During the past two decades, the widespread use of such methods has allowed a broad range of important scattering problems involving non-standard shapes, boundary conditions and material composition to be solved. In this sense, an efficient iterative technique based on the concept of wave is presented for computing periodic substrates in multilayered configuration. This paper presents an extensible approach of the iterative method to study multilayered substrates (n layers in which n = 2, 20) with spatial periodicity in multi- layer configuration. Our new approach is performed in order to study 3 dimensional structures by the method called Wave Concept Iterative Process (WCIP). This method is adapted in its original form to study 2 dimensional structures. The third dimension is modulated by transmission line as an approximation for every mode in spectral domain. The utility of the new WCIP appears because of its fast convergence and little consumption in memory
Purpose
The purpose of this paper is to present a new dual-band printed monopole antenna with a partial ground with two notched bands based on electromagnetic band gap (EBG) structures. A new type of EBG antenna with radiation patterns and antenna gains over the operating bands has been developed.
Design/methodology/approach
The proposed antenna consists of a pair of EBG structures using a transmission line model. The proposed antenna is designed on an FR4 substrate with a thickness of 1 mm and permittivity (er) = 4.3.
Findings
The measured results show good dual-band operations with −10 dB impedance bandwidths of 9.1 and 36.2 per cent centered at 2.45 and 6.364 GHz, respectively, which covers the wireless local area network (WLAN) operating bands.
Originality/value
A new type of EBG antenna with radiation patterns and antenna gains over the operating bands has been developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.