Pancreatic cancer remains as one of the most deadly cancers, and responds poorly to current therapies. The prognosis is extremely poor, with a 5-year survival of less than 5%. Therefore, search for new effective therapeutic drugs is of pivotal need and urgency to improve treatment of this incurable malignancy. Synthetic alkyl-lysophospholipid analogs (ALPs) constitute a heterogeneous group of unnatural lipids that promote apoptosis in a wide variety of tumor cells. In this study, we found that the anticancer drug edelfosine was the most potent ALP in killing human pancreatic cancer cells, targeting endoplasmic reticulum (ER). Edelfosine was taken up in significant amounts by pancreatic cancer cells and induced caspaseand mitochondrial-mediated apoptosis. Pancreatic cancer cells show a prominent ER and edelfosine accumulated in this subcellular structure, inducing a potent ER stress response, with caspase-4, BAP31 and c-Jun NH 2 -terminal kinase (JNK) activation, CHOP/GADD153 upregulation and phosphorylation of eukaryotic translation initiation factor 2 a-subunit that eventually led to cell death. Oral administration of edelfosine in xenograft mouse models of pancreatic cancer induced a significant regression in tumor growth and an increase in apoptotic index, as assessed by TUNEL assay and caspase-3 activation in the tumor sections. The ER stress-associated marker CHOP/ GADD153 was visualized in the pancreatic tumor isolated from edelfosine-treated mice, indicating a strong in vivo ER stress response. These results suggest that edelfosine exerts its pro-apoptotic action in pancreatic cancer cells, both in vitro and in vivo, through its accumulation in the ER, which leads to ER stress and apoptosis. Thus, we propose that the ER could be a key target in pancreatic cancer, and edelfosine may constitute a prototype for the development of a new class of antitumor drugs targeting the ER.
Pulmonary metastasis remains the leading ca use of death for cancer patients. Opportunities to improve treatment outcomes for patients require new methods to study and view the biology of metastatic progression. Here, we describe an ex vivo pulmonary metastasis assay (PuMA) in which the metastatic progression of GFPexpressing cancer cells, from a single cell to the formation of multicellular colonies, in the mouse lung microenvironment was assessed in real time for up to 21 days. The biological validity of this assay was confirmed by its prediction of the in vivo behavior of a variety of high-and low-metastatic human and mouse cancer cell lines and the discrimination of tumor microenvironments in the lung that were most permissive to metastasis. Using this approach, we provide what we believe to be new insights into the importance of tumor cell interactions with the stromal components of the lung microenvironment. Finally, the translational utility of this assay was demonstrated through its use in the evaluation of therapeutics at discrete time points during metastatic progression. We believe that this assay system is uniquely capable of advancing our understanding of both metastasis biology and therapeutic strategies. IntroductionPulmonary metastasis remains a leading cause of death for cancer patients (1, 2). Opportunities to improve outcomes for these patients require a greater understanding of the biology of metastasis. In addition, there is a need to evaluate novel therapeutics, in a timely manner, that specifically target metastases and metastatic progression. Simple in vitro assay systems are not sufficient to model the complex interaction between cancer cells and the surrounding microenvironment that is necessary for metastasis (3). Accordingly, in vivo models of metastasis, largely in mice, have been necessary. For the most part, these models provide end points of metastatic outcome (i.e., yes or no metastasis) and time to late-stage metastatic events.A "black box" exists during which metastatic progression from single cells to gross metastatic lesions at a secondary site occurs. Recent attempts to shed light on this process have included imaging strategies that allow some of the steps of metastatic progression to be followed in vivo (4). However, these approaches often involve sophisticated and expensive imaging techniques that are time consuming and do not easily allow serial assessment of early metastatic progression at secondary sites, particularly in the lung and at the single-cell level. Challenges associated with studying metastasis have resulted in limited opportunities to include the assessment of novel treatment agents against metastatic end points (5). Therefore, an unmet need in the field of cancer research is a simple assay in which the process of metastatic progression at a secondary site can be reproduced and studied over time.
It has been shown previously that cancer cells with an activated oncogenic pathway, including Met activation, require Ran for growth and survival.Here, we show that knockdown of Ran leads to a reduction of Met receptor expression in several breast and lung cancer cell lines. This, in turn suppressed HGF expression and the Met-mediated activation of the Akt pathway, as well as cell adhesion, migration, and invasion. In a cell line model where Met amplification has previously been shown to contribute to gefitinib resistance, Ran knockdown sensitized cells to gefitinib-mediated inhibition of Akt and ERK1/2 phosphorylation and consequently reduced cell proliferation. We further demonstrate that Met reduction-mediated by knockdown of Ran, occurs at the post-transcriptional level, probably via a matrix metalloproteinase. Moreover, the level of immunoreactive Ran and Met are positively associated in human breast cancer specimens, suggesting that a high level of Ran may be a pre-requisite for Met overexpression. Interestingly, a high level of immunoreactive Ran dictates the prognostic significance of Met, indicating that the co-overexpression of Met and Ran may be associated with cancer progression and could be used in combination as a prognostic indicator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.