Nowadays, the use of mobile technologies is rising at an alarming scale. Due to this, more powerful and efficient mobile applications are needed in order to keep up with this trend. Since there exists several mobile platforms (iOS, Android, etc…), each one with different SDK (Software Development Kit) tools and specific development capabilities, application development becomes more complicated and expensive. The challenge is to come up with a solution that allows us to deploy in different platforms using a single SDK tool and maintaining the same performance as the native application. A suitable solution is crossplatform. In this paper, we present a survey of cross-platform creation approaches with an emphasis on the MDA (Model Driven Architecture) approach as it is one of the most promising cross platform approaches. We also identify and discuss the main desirable requirements of any cross-platform technology.
Sentiment analysis aims to predict sentiment polarities (positive, negative or neutral) of a given piece of text. It lies at the intersection of many fields such as Natural Language Processing (NLP), Computational Linguistics, and Data Mining. Sentiments can be expressed explicitly or implicitly. Arabic Sentiment Analysis presents a challenge undertaking due to its complexity, ambiguity, various dialects, the scarcity of resources, the morphological richness of the language, the absence of contextual information, and the absence of explicit sentiment words in an implicit piece of text. Recently, deep learning has obviously shown a great success in the field of sentiment analysis and is considered as the state-of-the-art model in Arabic Sentiment Analysis. However, the state-of-the-art accuracy for Arabic sentiment analysis still needs improvements regarding contextual information and implicit sentiment expressed in different real cases. In this paper, an efficient Bidirectional LSTM Network (BiLSTM) is investigated to enhance Arabic Sentiment Analysis, by applying Forward-Backward encapsulate contextual information from Arabic feature sequences. The experimental results on six benchmark sentiment analysis datasets demonstrate that our model achieves significant improvements over the state-of-art deep learning models and the baseline traditional machine learning methods.
In this paper, we face the problem of generating reputation for movies, products, hotels, restaurants and services by mining customer reviews expressed in natural language. To the best of our knowledge, previous studies on reputation generation for online entities have primarily examined semantic and sentiment orientation of customer reviews, disregarding other useful information that could be extracted from reviews, such as review helpfulness and review time. Therefore, we propose a new approach that combines review helpfulness, review time, review attached rating and review sentiment orientation for the purpose of generating a single reputation value toward various entities. The contribution of the paper is threefold. First, we design two equations to compute review helpfulness and review time scores, and we fine-tune Bidirectional Encoder Representations from Transformers (BERT) model to predict the review sentiment orientation probability. Second, we design a formula to assign a numerical score to each review. Then, we propose a new formula to compute reputation value toward the target entity (movie, product, hotel, restaurant, service, etc). Finally, we propose a new form to visualize reputation that depicts numerical reputation value, opinion categories, top positive review and top negative review. Experimental results coming from several real-world data sets of miscellaneous domains collected from IMDb, TripAdvisor and Amazon websites show the effectiveness of the proposed method in generating and visualizing reputation compared to three state-of-the-art reputation systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.