In this paper, we study the influence of external factors on the measurement for the current-voltage (I-V) characteristic of the photovoltaic cell. These factors are the size of the number of measurements, the range of the cell generated voltage and the influence of measures step and mode combination of photovoltaic cells (parallel, serial, or hybrid). The main extracted parameters solar cell are the photocurrent I ph , the reverse diode saturation current I 0 , the ideality factor of diode n, the series resistance R s and the shunt resistance R sh . A method for finding these parameters, according to the single-diode model, was developed by Newton-Raphson's method using Matlab. To assess the accuracy of this method, measured and calculated I-V characteristics were compared with provided data by the manufacturer at standard test condition (STC). The measurement results showed that these parameters are highly dependent on these four factors.
M. ErritaliObtained a Phd in 2013 at the faculty of sciences, Mohamed V Agdal University Rabat. His current interests include developing specification and design techniques for use within Intelligent Network, data mining, image processing, cryptography and Electrical systems. He is currently a professor at
This paper presents a development of numerical method to determine and optimize the photocurrent densities in silicon solar cell. This method is based on finite difference algorithm to resolve the continuity and Poisson equations of minority charge carriers in p-n junction regions by using Thoma's algorithm to resolve the tridiagonal matrix. These equations include several physical parameters as the absorption coefficient and the reflection one of the material under the sunlight irradiation of AM1.5 solar spectrum. In this work, we study the effect of various parameters such as thickness and doping concentration of the (emitter, base) layers on crystalline silicon solar cell perfomance. The obtained results show that the optimum energy conversion efficiency is 22.16 % with the following electrical parameters solar cell Voc 0.62 V and Jph 43.20 mAcm-2. These results are compared with experimental data and show a good agreement of our developped method.
<p>The electrical and environmental parameters of polymer solar cells (PSC) provide important information on their performance. In the present article we study the influence of temperature on the voltage-current (I-V) characteristic at different temperatures from 10 °C to 90 °C, and important parameters like bandgap energy Eg, and the energy conversion efficiency η. The one-diode electrical model, normally used for semiconductor cells, has been tested and validated for the polemeral junction. The PSC used in our study are formed by the poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM). Our technique is based on the combination of two steps; the first use the Least Mean Squares (LMS) method while the second use the Newton-Raphson algorithm. The found results are compared to other recently published works, they show that the developed approach is very accurate. This precision is proved by the minimal values of statistical errors (RMSE) and the good agreement between both the experimental data and the I-V simulated curves. The obtained results show a clear and a monotonic dependence of the cell efficiency on the studied parameters.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.