The Fanconi anemia (FA) core complex plays a crucial role in a DNA damage response network with BRCA1 and BRCA2. How this complex interacts with damaged DNA is unknown, as only the FA core protein FANCM (the homolog of an archaeal helicase/nuclease known as HEF) exhibits DNA binding activity. Here, we describe the identification of FAAP24, a protein that targets FANCM to structures that mimic intermediates formed during the replication/repair of damaged DNA. FAAP24 shares homology with the XPF family of flap/fork endonucleases, associates with the C-terminal region of FANCM, and is a component of the FA core complex. FAAP24 is required for normal levels of FANCD2 monoubiquitylation following DNA damage. Depletion of FAAP24 by siRNA results in cellular hypersensitivity to DNA crosslinking agents and chromosomal instability. Our data indicate that the FANCM/FAAP24 complex may play a key role in recruitment of the FA core complex to damaged DNA.
Background: Phosphodiesterase-5 inhibition with sildenafil has been used to treat severe pulmonary hypertension and bronchopulmonary dysplasia (BPD), a chronic lung disease in very preterm infants who were mechanically ventilated for respiratory distress syndrome.
Rationale: Apelin, a potent vasodilator and angiogenic factor, may be a novel therapeutic agent in neonatal chronic lung disease, including bronchopulmonary dysplasia. Objectives: To determine the beneficial effect of apelin in neonatal rats with hyperoxia-induced lung injury, a model for premature infants with bronchopulmonary dysplasia. Methods: The cardiopulmonary effects of apelin treatment (62 mg/kg/d) were studied in neonatal rats by exposure to 100% oxygen, using two treatment strategies: early concurrent treatment during continuous exposure to hyperoxia for 10 days and late treatment and recovery in which treatment was started on Day 6 after hyperoxic injury for 9 days and continued during the 9-day recovery period. We investigated in both models the role of the nitric oxide-cyclic guanosine monophosphate (cGMP) pathway in apelin treatment by specific inhibition of the nitric oxide synthase activity with N v -nitro-L-arginine methyl ester (L-NAME, 25 mg/kg/d). Measurements and Main Results: Parameters investigated include survival, lung and heart histopathology, pulmonary fibrin deposition and inflammation, alveolar vascular leakage, lung cGMP levels, right ventricular hypertrophy, and differential mRNA expression in lung and heart tissue. Prophylactic treatment with apelin improved alveolarization and angiogenesis, increased lung cGMP levels, and reduced pulmonary fibrin deposition, inflammation, septum thickness, arteriolar wall thickness, and right ventricular hypertrophy. These beneficial effects were completely absent in the presence of L-NAME. In the injury-recovery model apelin also improved alveolarization and angiogenesis, reduced arteriolar wall thickness, and attenuated right ventricular hypertrophy. Conclusions: Apelin reduces pulmonary inflammation, fibrin deposition, and right ventricular hypertrophy, and partially restores alveolarization in rat pups with neonatal hyperoxic lung injury via a nitric oxide synthase-dependent mechanism.
Stimulation of MAS oncogene receptor (MAS) or angiotensin (Ang) receptor type 2 (AT2) may be novel therapeutic options for neonatal chronic lung disease (CLD) by counterbalancing the adverse effects of the potent vasoconstrictor angiotensin II, consisting of arterial hypertension (PAH)-induced right ventricular hypertrophy (RVH) and pulmonary inflammation. We determined the cardiopulmonary effects in neonatal rats with CLD of daily treatment during continuous exposure to 100% oxygen for 10 days with specific ligands for MAS [cyclic Ang-(1-7); 10-50 μg·kg(-1)·day(-1)] and AT2 [dKcAng-(1-7); 5-20 μg·kg(-1)·day(-1)]. Parameters investigated included lung and heart histopathology, fibrin deposition, vascular leakage, and differential mRNA expression in the lungs of key genes involved in the renin-angiotensin system, inflammation, coagulation, and alveolar development. We investigated the role of nitric oxide synthase inhibition with N(ω)-nitro-l-arginine methyl ester (25 mg·kg(-1)·day(-1)) during AT2 agonist treatment. Prophylactic treatment with agonists for MAS or AT2 for 10 days diminished cardiopulmonary injury by reducing alveolar septum thickness and medial wall thickness of small arterioles and preventing RVH. Both agonists attenuated the pulmonary influx of inflammatory cells, including macrophages (via AT2) and neutrophils (via MAS) but did not reduce alveolar enlargement and vascular alveolar leakage. The AT2 agonist attenuated hyperoxia-induced fibrin deposition. In conclusion, stimulation of MAS or AT2 attenuates cardiopulmonary injury by reducing pulmonary inflammation and preventing PAH-induced RVH but does not affect alveolar and vascular development in neonatal rats with experimental CLD. The beneficial effects of AT2 activation on experimental CLD were mediated via a NOS-independent mechanism.
Pulmonary arterial hypertension (PAH) is a chronic lung disease that leads to right ventricular (RV) hypertrophy (RVH), remodeling, and failure. We tested treatment with bone marrow-derived mesenchymal stem cells (MSCs) obtained from donor rats with monocrotaline (MCT)-induced PAH to recipient rats with MCT-induced PAH on pulmonary artery pressure, lung pathology, and RV function. This model was chosen to mimic autologous MSC therapy. On day 1, PAH was induced by MCT (60 mg/kg) in 20 female Wistar rats. On day 14, rats were treated with 10(6) MSCs intravenously (MCT + MSC) or with saline (MCT60). MSCs were obtained from donor rats with PAH at 28 days after MCT. A control group received saline on days 1 and 14. On day 28, the RV function of recipient rats was assessed, followed by isolation of the lungs and heart. RVH was quantified by the weight ratio of the RV/(left ventricle + interventricular septum). MCT induced an increase of RV peak pressure (from 27 + or - 5 to 42 +/- 17 mmHg) and RVH (from 0.25 + or - 0.04 to 0.47 + or - 0.12), depressed the RV ejection fraction (from 56 + or - 11 to 43 + or - 6%), and increased lung weight (from 0.96 + or - 0.15 to 1.66 + or - 0.32 g), including thickening of the arteriolar walls and alveolar septa. MSC treatment attenuated PAH (31 + or - 4 mmHg) and RVH (0.32 + or - 0.07), normalized the RV ejection fraction (52 + or - 5%), reduced lung weight (1.16 + or - 0.24 g), and inhibited the thickening of the arterioles and alveolar septa. We conclude that the application of MSCs from donor rats with PAH reduces RV pressure overload, RV dysfunction, and lung pathology in recipient rats with PAH. These results suggest that autologous MSC therapy may alleviate cardiac and pulmonary symptoms in PAH patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.