In this paper we consider the unconstrained minimization problem of a smooth function in \BbbR n in a setting where only function evaluations are possible. We design a novel randomized derivative-free algorithm-the stochastic three points (STP) method-and analyze its iteration complexity. At each iteration, STP generates a random search direction according to a certain fixed probability law. Our assumptions on this law are very mild: roughly speaking, all laws which do not concentrate all measures on any halfspace passing through the origin will work. For instance, we allow for the uniform distribution on the sphere and also distributions that concentrate all measures on a positive spanning set. Although our approach is designed to not explicitly use derivatives, it covers some first order methods. For instance, if the probability law is chosen to be the Dirac distribution concentrated on the sign of the gradient, then STP recovers the signed gradient descent method. If the probability law is the uniform distribution on the coordinates of the gradient, then STP recovers the randomized coordinate descent method. The complexity of STP depends on the probability law via a simple characteristic closely related to the cosine measure which is used in the analysis of deterministic direct search (DDS) methods. Unlike in DDS, where O(n) (n is the dimension of x) function evaluations must be performed in each iteration in the worst case, our method only requires two new function evaluations per iteration. Consequently, while the complexity of DDS depends quadratically on n, our method depends linearly on n.
The Levenberg-Marquardt algorithm is one of the most popular algorithms for the solution of nonlinear least squares problems. Motivated by the problem structure in data assimilation, we consider in this paper the extension of the classical Levenberg-Marquardt algorithm to the scenarios where the linearized least squares subproblems are solved inexactly and/or the gradient model is noisy and accurate only within a certain probability.Under appropriate assumptions, we show that the modified algorithm converges globally to a first order stationary point with probability one. Our proposed approach is first tested on simple problems where the exact gradient is perturbed with a Gaussian noise or only called with a certain probability. It is then applied to an instance in variational data assimilation where stochastic models of the gradient are computed by the so-called ensemble methods.
The Levenberg-Marquardt algorithm is one of the most popular algorithms for finding the solution of nonlinear least squares problems. Across different modified variations of the basic procedure, the algorithm enjoys global convergence, a competitive worst case iteration complexity rate, and a guaranteed rate of local convergence for both zero and nonzero small residual problems, under suitable assumptions. We introduce a novel Levenberg-Marquardt method that matches, simultaneously, the state of the art in all of these convergence properties with a single seamless algorithm. Numerical experiments confirm the theoretical behavior of our proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.