The combination of essential oils (EOs) is a novel alternative to improve their preservative effects and to reduce their organoleptic impact in food. In this context, this work aims to investigate the antibacterial combined effect of two EOs combinations through the calculation of the fractional inhibitory concentration index. The combinations tested consists of Lavandula dentata/Origanum majorana EOs and Thymus serpyllum/Origanum majorana EOs. Their chemical compositions were identified by CG/MS analyses. The main compounds of O. majorana EO were (-)-terpinene-4-ol and trans-4-thujanol. Those of L. dentata EO were β-pinene and 1,8-cineole, and those of T. serpyllum EO were p-cymene and γ-terpinene. Regarding the outcomes, results highlighted partial synergistic and additive interactions. Two combinations of marjoram and thyme EOs had antibacterial activities against S. aureus. The first one corresponded to the quarter of the minimum inhibitory concentration of marjoram and half that of thyme. The second one was the mix of half and quarter of the minimum inhibitory concentration of respectively marjoram and thyme EOs. This last combination also showed an antibacterial effect against E. coli. The quarter and the half of their minimum inhibitory concentration of marjoram and lavender combination, respectively, gave a partial synergy against both strains. Henceforth, these findings could be largely exploited in food preservation through the use of minimal doses of these plant products without affecting the antibacterial and the organoleptic properties in foods.
In this work, the chemical composition, the antioxidant, and the antibacterial activities of two Moroccan essential oils less studied, extracted from Pelargonium asperum and Ormenis mixta, were investigated. According to the gas chromatography coupled to mass spectrometry analysis, citronellol (25.07%), citronellyl ester (10.52%), geraniol (10.46%), and buthyl anthranilate (5.93%) were found to be the major components of P. asperum, while O. mixta was mainly composed of D-germacrene (11.46%), 1,8-cineole (10.28%), and cis-methyl isoeugenol (9.04%). Moreover, O. mixta essential oil exhibited an important antioxidant activity being significantly higher than that exhibited by P. asperum oil (P < 0.001). As regards the antimicrobial activity of both essential oils, the zones of growth inhibition and the minimum inhibitory concentration values showed that P. asperum essential oil was more active than that of O. mixta. Thereafter, the impact of the binary combination of essential oils on their antimicrobial effect was investigated against Staphylococcus aureus using the fractional inhibitory concentration index calculation. The results showed a promising synergistic antibacterial interaction between essential oils studied.
Candida albicans is the most common fungal pathogen of humans; this infectious agent can adhere and colonize several surfaces to establish many dangerous infections. The effect of methanol extract from Bacillus sp. isolated from Calotropis procera Ait. rhizosphere on the physicochemical characteristics of Candida albicans cell surface was investigated. The Lifshitz-van der Waals (γ ). After limited exposure to the antifungal extract, the treated cell surface has become more hydrophilic quantitatively. Moreover, the results showed an increase of the electron donor character and a decrease of the electron acceptor character. However, non-significant modifications on the physicochemical characteristics of cell surface between exposures for 1 and 2 h to the extract were found. The present investigation may provide information that could be used to alter or modify the adherence of C. albicans to biotic and abiotic surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.