With the rapid growth in the amount of video data, efficient video indexing and retrieval methods have become one of the most critical challenges in multimedia management. For this purpose, Content-Based Video Retrieval (CBVR) is nowadays an active area of research. In this article, a CBVR system providing similar videos from a large multimedia dataset based on query video has been proposed. This approach uses vector motion-based signatures to describe the visual content and uses machine learning techniques to extract key frames for rapid browsing and efficient video indexing. The proposed method has been implemented on both single machine and real-time distributed cluster to evaluate the real-time performance aspect, especially when the number and size of videos are large. Experiments were performed using various benchmark action and activity recognition datasets and the results reveal the effectiveness of the proposed method in both accuracy and processing time compared to previous studies.
Time processing is a challenging issue for content-based video retrieval systems, especially when the process of indexing, classifying and retrieving desired and relevant videos is from a huge database. A CBVR system called bounded coordinate of motion histogram (BCMH) has been implemented as a case study. The BCMH offline step requires a long time to complete the learning phase, and the online step falls short in addressing the real-time video processing. To overcome these drawbacks, this article presents a batch-oriented computing based on Apache Hadoop to improve the time processing for the offline step, and a real-time oriented computing based on Apache Storm topologies to achieve a real-time response for the online step. The proposed approach is tested on the HOLLYWOOD2 dataset and the obtained results demonstrate reliability and efficiency of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.