The risk of pedestrian accidents has increased due to the distracted walking increase. The research in the autonomous vehicles industry aims to minimize this risk by enhancing the route planning to produce safer routes. Detecting distracted pedestrians plays a significant role in identifying safer routes and hence decreases pedestrian accident risk. Thus, this research aims to investigate how to use the convolutional neural networks for building an algorithm that significantly improves the accuracy of detecting distracted pedestrians based on gathered cues. Particularly, this research involves the analysis of pedestrian' images to identify distracted pedestrians who are not paying attention when crossing the road. This work tested three different architectures of convolutional neural networks. These architectures are Basic, Deep, and AlexNet. The performance of the three architectures was evaluated based on two datasets. The first is a new training dataset called SCIT and created by this work based on recorded videos of volunteers from Sheridan College Institute of Technology. The second is a public dataset called PETA, which was made up of images with various resolutions. The ConvNet model with the Deep architecture outperformed the Basic and AlexNet architectures in detecting distracted pedestrian.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.