Öhlund et al. develop a three-dimensional co-culture platform of neoplastic pancreatic ductal organoids and pancreatic stellate cells (PSCs) to characterize the dynamic crosstalk between cancer cells and stromal cells, and to address stromal heterogeneity. The co-cultures reveal the co-existence of two phenotypically distinct populations of PSCs, providing insights into PDA biology and prompting a reconsideration of interventional strategies.
SUMMARY
Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation and exhibit ductal- and disease stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy.
Cancer-associated fi broblasts (CAF) are major players in the progression and drug resistance of pancreatic ductal adenocarcinoma (PDAC). CAFs constitute a diverse cell population consisting of several recently described subtypes, although the extent of CAF heterogeneity has remained undefi ned. Here we use single-cell RNA sequencing to thoroughly characterize the neoplastic and tumor microenvironment content of human and mouse PDAC tumors. We corroborate the presence of myofi broblastic CAFs and infl ammatory CAFs and defi ne their unique gene signatures in vivo. Moreover, we describe a new population of CAFs that express MHC class II and CD74, but do not express classic costimulatory molecules. We term this cell population "antigenpresenting CAFs" and fi nd that they activate CD4 + T cells in an antigen-specifi c fashion in a model system, confi rming their putative immune-modulatory capacity. Our cross-species analysis paves the way for investigating distinct functions of CAF subtypes in PDAC immunity and progression. SIGNIFICANCE : Appreciating the full spectrum of fi broblast heterogeneity in pancreatic ductal adenocarcinoma is crucial to developing therapies that specifi cally target tumor-promoting CAFs. This work identifi es MHC class II-expressing CAFs with a capacity to present antigens to CD4 + T cells, and potentially to modulate the immune response in pancreatic tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.