The alpine environment is characterized by complex geology, high-energy terrain, deeply incised river valleys with high erosional potential, extreme weather conditions and dynamic geomorphic processes. Such settings provide favourable conditions for the formation of composite landslides rather than individual slope mass movement phenomena. As an example, we present the kinematics of the composite landslide Urbas in the North of Slovenia which developed in the complex geological and morphological settings characteristic of the alpine environment. The research combines several monitoring techniques and involves the integration of both surface and subsurface displacements measured in the landslide area. The results indicate that the composite sliding process consists of several simultaneous and interrelated types of movements occurring in different segments of the unstable mass that are governed by different mechanisms of displacements, such as rockfall, sliding and debris flow. The kinematic characteristics of a deep-seated landslide that formed in such conditions vary spatially, but is rather homogenuous vertically, indicating translational type of movement. Spatial kinematic heterogeneity is primarily related to the diverse terrain topography, reflecting in different displacement trends. Based on the revealed kinematic proprieties of the sliding material, the sediment discharge illustrates the sliding material balance which estimates the volume of the retaining material that represents the potential for slope mass movement events of larger scales.
This paper gives an overview of landslide research and the activity of landslides located above the Koroška Bela settlement in Northwest Slovenia. There are several landslides in this area and they pose a direct threat to the settlement below. The settlement is very densely populated (about 2,100 inhabitants) and has well-developed industry and infrastructure. It is built on deposits from past debris flows, indicating that large slope mass movements have occurred in the past. In this regard, the hinterland of Koroška Bela has been investigated since 2006, within the framework of various research, technical and European projects. The most extensive geological and geotechnical investigations were carried out after April 2017, when part of the Čikla landslide collapsed and mobilised into a debris flow. All of the investigations which have been carried out over the years revealed that the hinterland of Koroška Bela is characterised by high landslide activity due to geological, hydrogeological and tectonic conditions. In order to protect people and their property, it is essential to implement a holistic mitigation measure which includes remediation works (drainage works, debris flow breaker, etc.) and non-structural measures (monitoring system, early warning system, risk management, etc.). Regular and continuous monitoring of all landslides is also crucial to observe the landslide dynamics and evaluate the effectiveness of structural mitigation measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.