In organic microcavities, hybrid light-matter states can form with energies that differ from the bare molecular excitation energies by nearly 1 eV. A timely question, given recent advances in the development of thermally activated delayed fluorescence materials, is whether strong light-matter coupling can be used to invert the ordering of singlet and triplet states and, in addition, enhance reverse intersystem crossing (RISC) rates. Here, we demonstrate a complete inversion of the singlet lower polariton and triplet excited states. We also unambiguously measure the RISC rate in strongly-coupled organic microcavities and find that, regardless of the large energy level shifts, it is unchanged compared to films of the bare molecules. This observation is a consequence of slow RISC to the lower polariton due to the delocalized nature of the state across many molecules and an inability to compete with RISC to the dark exciton reservoir, which occurs at a rate comparable to that in bare molecules.
In search of cell death-inducing proteins, we found a xyloglucanase (BcXYG1) that induced strong necrosis and a resistance response in dicot plants. Expression of the gene was strongly induced during the first 12 h post inoculation, and analysis of disease dynamics using PathTrack showed that a strain overexpressing produced early local necrosis, supporting a role of BcXYG1 as an early cell death-inducing factor. The xyloglucanase activity of BcXYG1 was not necessary for the induction of necrosis and plant resistance, as a mutant of BcXYG1 lacking the xyloglucanase enzymatic activity retained both functions. Residues in two exposed loops on the surface of BcXYG1 were found to be necessary for the induction of cell death but not to induce plant resistance. Further analyses showed that BcXYG1 is apoplastic and possibly interacts with the proteins of the plant cell membrane and also that the BcXYG1 cell death-promoting signal is mediated by the leucine-rich repeat receptor-like kinases BAK1 and SOBIR1. Our findings support the role of cell death-inducing proteins in establishing the infection of necrotrophic pathogens and highlight the recognition of fungal apoplastic proteins by the plant immune system as an important mechanism of resistance against this class of pathogens.
We study the optical dynamics in complexes of aluminum nanoantennas coated with molecular J-aggregates and find that they provide an excellent platform for the formation of hybrid exciton-localized surface plasmons. Giant Rabi splitting of 0.4 eV, which corresponds to ∼10 fs energy transfer cycle, is observed in spectral transmittance. We show that the nanoantennas can be used to manipulate the polarization of hybrid states and to confine their mode volumes. In addition, we observe enhancement of the photoluminescence due to enhanced absorption and increase in the local density of states at the exciton-localized surface plasmon energies. With recent emerging technological applications based on strongly coupled light-matter states, this study opens new possibilities to explore and utilize the unique properties of hybrid states over all of the visible region down to ultraviolet frequencies in nanoscale, technologically compatible, integrated platforms based on aluminum.
We explore the electroluminescence efficiency for a quantum mechanical model of a large number of molecular emitters embedded in an optical microcavity. We characterize the circumstances under which a microcavity enhances harvesting of triplet excitons via reverse intersystem-crossing (R-ISC) into singlet populations that can emit light. For that end, we develop a time-local master equation in a variationally optimized frame which allows for the exploration of the population dynamics of chemically relevant species in different regimes of emitter coupling to the condensed phase vibrational bath and to the microcavity photonic mode. For a vibrational bath that equilibrates faster than R-ISC (in emitters with weak singlet-triplet mixing), our results reveal that significant improvements in efficiencies with respect to the cavity-free counterpart can be obtained for strong coupling of the singlet exciton to a photonic mode, as long as the singlet to triplet exciton transition is within the inverted Marcus regime; under these circumstances, the activation energy barrier from the triplet to the lower polariton can be greatly reduced with respect to that from the triplet to the singlet exciton, thus overcoming the detrimental delocalization of the polariton states across a macroscopic number of molecules. On the other hand, for a vibrational bath that equilibrates slower than R-ISC (i.e., emitters with strong singlet-triplet mixing), we find that while enhancemnents in photoluminiscence can be obtained via vibrational relaxation into polaritons, this only occurs for small number of emitters coupled to the photon mode, with delocalization of the polaritons across many emitters eventually being detrimental to electroluminescence efficiency. These findings provide insight on the tunability of optoelectronic processes in molecular materials due to weak and strong light-matter coupling.arXiv:1904.07948v1 [cond-mat.mes-hall]
In organic photodiodes (OPDs) light is absorbed by excitons, which dissociate to generate photocurrent. Here, we demonstrate a novel type of OPD in which light is absorbed by polaritons, hybrid light-matter states. We demonstrate polariton OPDs operating in the ultra-strong coupling regime at visible and infrared wavelengths. These devices can be engineered to show narrow responsivity with a very weak angle-dependence. More importantly, they can be tuned to operate in a spectral range outside that of the bare exciton absorption. Remarkably, we show that the responsivity of a polariton OPD can be pushed to near infrared wavelengths, where few organic absorbers are available, with external quantum efficiencies exceeding those of a control OPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.