Identifying the molecular mechanisms that give rise to genetic variation is essential for the understanding of evolutionary processes. Previously, we have used adaptive laboratory evolution to enable biomass synthesis from CO2 in Escherichia coli. Genetic analysis of adapted clones from two independently evolving populations revealed distinct enrichment for insertion and deletion mutational events. Here, we follow these observations to show that mutations in the gene encoding for DNA topoisomerase I (topA) give rise to mutator phenotypes with characteristic mutational spectra. Using genetic assays and mutation accumulation lines, we find that point mutations in topA increase the rate of sequence deletion and duplication events. Interestingly, we observe that a single residue substitution (R168C) results in a high rate of head-to-tail (tandem) short sequence duplications, which are independent of existing sequence repeats. Finally, we show that the unique mutation spectrum of topA mutants enhances the emergence of antibiotic resistance in comparison to mismatch-repair (mutS) mutators, and leads to new resistance genotypes. Our findings highlight a potential link between the catalytic activity of topoisomerases and the fundamental question regarding the emergence of de novo tandem repeats, which are known modulators of bacterial evolution.
RPS3, a universal core component of the 40S ribosomal subunit, interacts with mRNA at the entry channel. Whether RPS3 mRNA-binding contributes to specific mRNA translation and ribosome specialization in mammalian cells is unknown. Here we mutated RPS3 mRNA-contacting residues R116, R146 and K148 and report their impact on cellular and viral translation. R116D weakened cap-proximal initiation and promoted leaky scanning, while R146D had the opposite effect. Additionally, R146D and K148D displayed contrasting effects on start-codon fidelity. Translatome analysis uncovered common differentially translated genes of which the downregulated set bears long 5’UTR and weak AUG context, suggesting a stabilizing role during scanning and AUG selection. We identified an RPS3-dependent regulatory sequence (RPS3RS) in the sub-genomic 5’UTR of SARS-CoV-2 consisting of a CUG initiation codon and a downstream element that is also the viral transcription regulatory sequence (TRS). Furthermore, RPS3 mRNA-binding residues are essential for SARS-CoV-2 NSP1-mediated inhibition of host translation and for its ribosomal binding. Intriguingly, NSP1-induced mRNA degradation was also reduced in R116D cells, indicating that mRNA decay occurs in the ribosome context. Thus, RPS3 mRNA-binding residues have multiple translation regulatory functions and are exploited by SARS-CoV-2 in various ways to influence host and viral mRNA translation and stability.
Identifying the molecular mechanisms that give rise to genetic variation is essential for the understanding of evolutionary processes. Previously, we have used adaptive laboratory evolution to enable biomass synthesis from CO 2 in E. coli . Genetic analysis of adapted clones from two independently evolving populations revealed distinct enrichment for insertion and deletion mutational events. Here, we follow these observations to show that mutations in the gene encoding for DNA Topoisomerase 1 ( topA ) give rise to mutator phenotypes with characteristic mutational spectra. Using genetic assays and mutation accumulation lines, we show that point mutations in topA increase the rate of sequence deletion and duplication events. Interestingly, we observe that a single residue substitution (R168C) results in a high rate of head-to-tail (tandem) short sequence duplications, which are independent of existing sequence repeats. Finally, we show that the unique mutation spectrum of topA mutants enhances the emergence of antibiotic resistance in comparison to mismatch-repair ( mutS ) mutators, and lead to new resistance genotypes. Our findings highlight a potential link between the catalytic activity of topoisomerases and the fundamental question regarding the emergence of de novo tandem repeats, which are known modulators of bacterial evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.