The armadillo-family protein, p120 catenin (p120), binds to the juxtamembrane domain of classical cadherins and increases cellcell junction stability. Overexpression of p120 modulates the activity of Rho family GTPases and augments cell migratory ability. Here we show that down-regulation of p120 in epithelial MCF-7 cells by siRNA leads to a striking decrease in lamellipodial persistence and focal adhesion formation. Similar alterations in lamellipodial activity were observed in MCF-7 cells treated with siRNA to cortactin, an activator of Arp2/3-dependent actin polymerization. We found that, in many cell types, p120 is colocalized with cortactin-containing actin structures not only at cell-cell junctions, but also at extrajunctional sites including membrane ruffles and actin-rich halos around endocytotic vesicles. p120 depletion led to dramatic loss of cortactin and its partner, Arp3, from the cell leading edges. Cortactin and p120 are shown to directly interact with each other via the cortactin N-terminal region. We propose that the mechanism underlying p120 functions at the leading edge involves its cooperation with cortactin.
We previously found that a short exposure of Staphylococcus aureus to subinhibitory (SI) doses of epigallocatechin gallate (EGCG) results in increased cell wall thickness, adaptation, and enhanced tolerance to cell-wall-targeted antibiotics. In this study, the response to EGCG of sigB and vraSR transcription factor mutants was characterized. We show that in contrast to the results observed for wild-type (WT) strains, an S. aureus 315 vraSR null mutant exposed to SI doses of EGCG did not exhibit increased tolerance to EGCG and oxacillin. A diminished increase in tolerance to ampicillin (from 16-fold to 4-fold) and no change in the magnitude of resistance to vancomycin were observed. Preexposure to EGCG enhanced the tolerance of wild-type and sigB null mutant cells to lysostaphin, but this enhancement was much weaker in the vraSR null mutant. Marked upregulation (about 60-fold) of vraR and upregulation of the peptidoglycan biosynthesis-associated genes murA, murF, and pbp2 (2-, 5-, and 6-fold, respectively) in response to SI doses of EGCG were determined by quantitative reverse transcription-PCR (qRT-PCR). EGCG also induced the promoter of sas016 (encoding a cell wall stress protein of unknown function which is not induced in vraSR null mutants) in a concentration-dependent manner, showing kinetics comparable to those of cell-wall-targeting antibiotics. Taken together, our results suggest that the two-component VraSR system is involved in modulating the cell response to SI doses of EGCG.
Menthol (C 10 H 20 O) possesses antibacterial activity; nevertheless, bacterial adaptation to this compound has never been studied. Here we report that precultivation of enterohemorrhagic Escherichia coli (EHEC) strains in increasing subinhibitory (SI) concentrations of menthol significantly elevates (4-to 16-fold) their resistance to menthol. Concomitant morphological alterations included the appearance of mucoid colonies and reduced biofilm production. Scanning electron microscopy (SEM) examination revealed suppressed curli formation in menthol-adapted cells. Expression of the gene cpsB10 (encoding one of the enzymes responsible for colanic acid production) was elevated in response to SI concentrations of menthol in a laboratory E. coli strain, whereas expression in an rcsC null mutant was reduced, implicating a partial role for the Rcs phosphorelay system in mediating the menthol signal. Adaptation to menthol also reduced expression of the locus of enterocyte effacement-encoded regulator (Ler). This reduction, together with reduced curli and biofilm formation and elevated mucoidity, suggests a general reduction in bacterial virulence following adaptation to menthol. Our results thus suggest menthol as a potential lead in the recently emerging alternative strategy of targeting bacterial virulence factors to develop new types of anti-infective agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.