Diverse methods for converting biomass into fuels are necessary for the functioning of a flexible and profitable biorefinery. Catalytic hydrocracking of fatty acids and their derivatives, which can be used as biofuels precursors, is rather scarce. In this work we introduce a highly selective hydrocracking process for castor oil fatty acid methyl esters (FAME) over a bifunctional polyoxometalate (POM) catalyst. Keggin-type polyoxometalates catalysts, with tungsten as addenda atoms, were examined in this research. Nickel substituted Keggin polyoxometalate,demonstrated the highest activity towards selective hydrocracking on a specific position in methyl ricinoleate, which is the predominant component of castor oil FAME. In addition, hydrogenation is unavoidable in this reaction and hydrogenation products, such as those with reduced double bond or without the hydroxyl group of methyl ricinoleate, are always present. The Ni-POM catalyst and other examined polyoxometalates catalysts were characterized using XRD, EDX, XPS and BET. The products were identified with GC-MS and their yields were recorded with GC.
Highly efficient catalytic hydrogenation of halogenated furfurals to 5-methyl furfural over activated carbon supported palladium catalysts is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.