Bacterial pathogens are one of the primary causes of human morbidity worldwide. Historically, antibiotics have been highly effective against most bacterial pathogens; however, the increasing resistance of bacteria to a broad spectrum of commonly used antibiotics has become a global health-care problem. Early and rapid determination of bacterial susceptibility to antibiotics has become essential in many clinical settings and, sometimes, can save lives. Currently classical procedures require at least 48 h for determining bacterial susceptibility, which can constitute a life-threatening delay for effective treatment. Infrared (IR) microscopy is a rapid and inexpensive technique, which has been used successfully for the detection and identification of various biological samples; nonetheless, its true potential in routine clinical diagnosis has not yet been established. In this study, we evaluated the potential of this technique for rapid identification of bacterial susceptibility to specific antibiotics based on the IR spectra of the bacteria. IR spectroscopy was conducted on bacterial colonies, obtained after 24 h culture from patients' samples. An IR microscope was utilized, and a computational classification method was developed to analyze the IR spectra by novel pattern-recognition and statistical tools, to determine E. coli susceptibility within a few minutes to different antibiotics, gentamicin, ceftazidime, nitrofurantoin, nalidixic acid, ofloxacin. Our results show that it was possible to classify the tested bacteria into sensitive and resistant types, with success rates as high as 85% for a number of examined antibiotics. These promising results open the potential of this technique for faster determination of bacterial susceptibility to certain antibiotics.
Bacterial resistance to antibiotics is becoming a global health-care problem. Bacteria are involved in many diseases, and antibiotics have been the most effective treatment for them. It is essential to treat an infection with an antibiotic to which the infecting bacteria is sensitive; otherwise, the treatment is not effective and may lead to life-threatening progression of disease. Classical microbiology methods that are used for determination of bacterial susceptibility to antibiotics are time consuming, accounting for problematic delays in the administration of appropriate drugs. Infrared-absorption microscopy is a sensitive and rapid method, enabling the acquisition of biochemical information from cells at the molecular level. The combination of Fourier transform infrared (FTIR) microscopy with new statistical classification methods for spectral analysis has become a powerful technique, with the ability to detect structural molecular changes associated with resistivity of bacteria to antibiotics. It was possible to differentiate between isolates of Escherichia (E.) coli that were sensitive or resistant to different antibiotics with good accuracy. The objective computational classifier, based on infrared absorption spectra, is highly sensitive to the subtle infrared spectral changes that correlate with molecular changes associated with resistivity. These changes enable differentiating between the resistant and sensitive E. coli isolates within a few minutes, following the initial culture. This study provides proof-of-concept evidence for the translational potential of this spectroscopic technique in the clinical management of bacterial infections, by characterizing and classifying antibiotic resistance in a much shorter time than possible with current standard laboratory methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.