Penyakit Liver merupakan penyakit dimana disebabkan oleh berbagai faktor yang merusak hati, seperti virus,penggunaan alkohol dan lainnya. Dalam hal penanganan pasien pada tahap awal sangatlah penting untuk kelangsungan pasien dan penyakit hati tidak mudah ditemukan pada stadium awal. Untuk itu kami melakukan sebuah penelitian dengan menggunakan dua metode yaitu metode Decision Tree dan Metode Neural Network untuk mengetahui nilai akurasinya. Berdasarkan hasil perbandingan, diperoleh neural network terbaik dalam mendeteksi penyakit hati.
Koperasi karyawan PT. Mitraindo Sejahtera Utama cara kerjanya masih bersifat manual dengan menggunakan aplikasi Microsoft Excel, sehingga informasi yang dihasilkan kurang akurat dan kemungkinan terjadi kesalahan dalam proses pendataan dan perhitungan. Tujuan penelitian ini untuk membuat sebuah aplikasi simpan pinjam berbasis web pada Koperasi karyawan PT. Mitraindo Sejahtera Utama. Dengan adanya aplikasi ini diharapkan dapat mengurangi kesalahan dalam pengolahan data dan dapat memperlancar jalanya proses simpan pinjam pada Koperasi karyawan PT. Mitraindo Sejahtera Utama, sehingga proses kinerja menjadi lebih cepat dan akurat. Metode perancangan perangkat lunak yang digunakan yaitu analisa sistem berjalan pada Koperasi karyawan PT. Mitraindo Sejahtera Utama meliputi desain sistem, desain database dan implementasi sistem. Laporan yang dihasilkan meliputi laporan data anggota, simpanan anggota, laporan pinjaman serta laporan angsuran pinjaman. Bahasa pemograman yang digunakan adalah PHP My SQL, perangkat lunak yang mendukung dalam pembuatan aplikasi adalah Dreamweaver CS6, Adobe photoshop dan Xampp.
The liver is a vital human organ that has complex and diverse functions, one of which is to maintain the needs of organs in the body, especially the brain, because the brain is a complex liver function, therefore liver health needs to be considered early so that the body remains healthy. Liver or liver disease is one of the 10 biggest diseases that cause death in Indonesia, but the public's understanding of liver disease is still very low. As a result, many of them do not get early treatment appropriately. In this study the C4.5 algorithm was optimized by using Particle Swarm Optimization to improve the accuracy of predictions of liver disease diagnosis. After testing with two models, namely C4.5 Algorithm and C4.5 Optimization using Particle Swarm Optimization, the results obtained by testing using C4.5 where the accuracy value is 78,86% and the AUC value is 0,815%, while testing using Optimization of C4.5 with Particle Swarm Optimization obtained 82,08% accuracy value and AUC value was 0,829 with good classification diagnosis. So that the two methods have different levels of accuracy that is equal to 3,22% and the difference in the AUC value is 0,014%. It can be concluded that the application of the Particle Swarm Optimization optimization technique is able to select attributes on C4.5, resulting in a better level of diagnosis of liver disease than using the individual method C4.5 algorithm.
Diabetes is a disease that affects many people with the characteristics of high blood sugar levels. The International Diabetic Federation (IDF) estimates the number of Indonesians aged 20 years and over, suffering from diabetes at 5.6 million people in 2001, and increasing to 8.2 million people in 2020. The problem that occurs is that many people do not know that they suffer from diabetes because they do not have basic knowledge about diabetes and the existing methods to detect diabetes are time consuming. In this study, three data mining methods were compared, namely the neural network algorithm, naïve Bayes, and logistic regression using the rapid miner application by applying the Confusion Matrix Evaluation (Accuracy) and the ROC Curve. The result of this research is that logistic regression method is a fairly good method in predicting early diagnosis of diabetes compared to the naïve Bayes method and the neural network. From the evaluation and validation, it is known that logistic regression has the highest accuracy and AUC values among the comparable methods, namely 75.78% and AUC 0.801, followed by the naïve Bayes algorithm which is 74.87% and AUC 0.799, and the neural network is 69.27% and AUC 0.736. has the lowest accuracy.
SMK Bina Mandiri Sukabumi merupakan instansi yang bergerak dalam bidang pendidikan. Pengolahan data kehadiran dan data nilai siswa di sekolah ini diolah secara konvensional yaitu dengan cara masing-masing guru bidang studi melakukan pengumpulan data absen, nilai UTS, nilai UAS, serta nilai tugas kedalam suatu lembaran kertas kemudian disetorkan kepada wali kelas dan wali kelas menyalinnya kembali nilai ke dalam buku yang disebut dengan raport. Hal ini menyebabkan keterlambatan, banyak waktu dan tenaga yang diperlukan dalam proses pengisian nilai raport, kurang efisien dalam pencarian nilai siswa, update nilai siswa, dan rekap nilai siswa. Metode penelitian yang digunakan dalam perancangan sistem informasi pengolahan data nilai siswa ini yaitu menggunakan metode Waterfall dan rancangan basis data menggunakan Entity Relationship Diagram (ERD) dan Logical Record Structure (LRS). Dengan berbasiskan web informasi dapat di akses kapan saja dan dimana saja dan dapat mempermudah tugas wali kelas dan guru bidang studi dalam pengolahan data nilai siswa dan dalam pencarian nilai siswa menjadi efektif dan efisien.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.