Equipped with a third hand under their direct control, surgeons may be able to perform certain surgical interventions alone; this would reduce the need for a human assistant and related coordination difficulties. However, does human performance improve with three hands compared to two hands? To evaluate this possibility, we carried out a behavioural study on the performance of naive adults catching objects with three virtual hands controlled by their two hands and right foot. The subjects could successfully control the virtual hands in a few trials. With this control strategy, the workspace of the hands was inversely correlated with the task velocity. The comparison of performance between the three and two hands control revealed no significant difference of success in catching falling objects and in average effort during the tasks. Subjects preferred the three handed control strategy, found it easier, with less physical and mental burden. Although the coordination of the foot with the natural hands increased trial after trial, about two minutes of practice was not sufficient to develop a sense of ownership towards the third arm.
In the operational theater, the surgical team could highly benefit from a robotic supplementary hand under the surgeon’s full control. The surgeon may so become more autonomous; this may reduce communication errors with the assistants and take over difficult tasks such as holding tools without tremor. In this paper, we therefore examine the possibility to control a third robotic hand with one foot’s movements. Three experiments in virtual reality were designed to assess the feasibility of this control strategy, the learning curve of the subjects in different tasks and the coordination of foot movements with the two natural hands. Results show that the limbs are moved simultaneously, in parallel rather than serially. Participants’ performance improved within a few minutes of practice without any specific difficulty to complete the tasks. Subjective assessment by the subjects indicated that controlling a third hand by foot has been easy and required only negligible physical and mental efforts. The sense of ownership was reported to improve through the experiments. The mental burden was not directly related to the level of motion required by a task, but depended on the type of activity and practice. The most difficult task was moving two hands and foot in opposite directions. These results suggest that a combination of practice and appropriate tasks can enhance the learning process for controlling a robotic hand by foot.
Objectives: Haptics in teleoperated medical interventions enables measurement and transfer of force information to the operator during robot-environment interaction. This paper provides an overview of the current research in this domain and guidelines for future investigations. Methods: We review current technologies in force measurement and haptic devices as well as their experimental evaluation and influence on user's performance. Results: Force sensing is moving away from the conventional proximal measurement methods to distal sensing and contact-less methods. Wearable devices that deliver haptic feedback on different body parts are increasingly playing an important role. Performance and accuracy improvement are the widely reported benefits of haptic feedback, while there is a debate on its effect on task completion time and exerted force. Conclusion: With the surge of new ideas, there is a need for better and more systematic validation of the new sensing and feedback technology, through better user studies and novel methods like validated benchmarks and new taxonomies. Significance: This review investigates haptics from sensing to interfaces within the context of user's performance and the validation procedures to highlight salient advances. It provides guidelines to future developments and highlights the shortcomings in the field.
Service robots are increasingly deployed in various industries including tourism. In spite of extensive research on the user’s experience in interaction with these robots, there are yet unanswered questions about the factors that influence user’s compliance. Through three online studies, we investigate the effect of the robot anthropomorphism and language style on customers’ willingness to follow its recommendations. The mediating role of the perceived mind and persuasiveness in this relationship is also investigated. Study 1 (n = 89) shows that a service robot with a higher level of anthropomorphic features positively influences the willingness of users to follow its recommendations while language style does not affect compliance. Study 2a (n = 168) further confirms this finding when we presented participants with a tablet vs. a service robot with an anthropomorphic appearance while communication style does not affect compliance. Finally, Study 2b (n = 122) supports the indirect effect of anthropomorphism level on the willingness to follow recommendations through perceived mind followed by persuasiveness. The findings provide valuable insight to enhance human–robot interaction in service settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.