In this study, a magnetic solid-phase extraction method was developed based on multi-wall carbon nanotubes decorated by magnetic nanoparticles (Fe3O4) and cadmium sulfide nanoparticles (Fe3O4@MWCNT-CdS) for trace extraction of cefixime and tetracycline antibiotics from urine and drug company wastewater. The adsorbent features were characterized by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), and energy dispersive X-ray analysis (EDX). Various effective parameters on the sorption and desorption cycle, such as sorption time, the mass of adsorbent, pH, salt addition, and material ratio, were investigated and optimized. The data were evaluated using isotherm models, and experimental data were well-fitted to both Langmuir (R2 = 0.975) and Freundlich (R2 = 0.985) models. Moreover, kinetic of reaction was agreement with pseudo-second-order (R2 = 0.999) as compared pseudo-first-order (R2 = 0.760). The maximum adsorption capacity for tetracycline and cefixime was achieved at 116.27 and 105.26 mg·g−1, respectively. Hence, the prepared adsorbent can be used as an alternative material for enhanced determination of pharmaceutical substances in biological fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.