Spatial group recommendation refers to suggesting places to a given set of users. In a group recommender system, members of a group should have similar preferences in order to increase the level of satisfaction. Location-based social networks (LBSNs) provide rich content, such as user interactions and location/event descriptions, which can be leveraged for group recommendations. In this paper, an automatic user grouping model is introduced that obtains information about users and their preferences through an LBSN. The preferences of the users, proximity of the places the users have visited in terms of spatial range, users' free days, and the social relationships among users are extracted automatically from location histories and users' profiles in the LBSN. These factors are combined to determine the similarities among users. The users are partitioned into groups based on these similarities. Group size is the key to coordinating group members and enhancing their satisfaction. Therefore, a modified k-medoids method is developed to cluster users into groups with specific sizes. To evaluate the efficiency of the proposed method, its mean intra-cluster distance and its distribution of cluster sizes are compared to those of general clustering algorithms. The results reveal that the proposed method compares favourably with general clustering approaches, such as k-medoids and spectral clustering, in separating users into groups of a specific size with a lower mean intra-cluster distance.
Location-based social networking services have attracted great interest with the growth of smart mobile devices. Recommending locations for users based on their preferences is an important task for location-based social networks (LBSNs). Since human beings are social by nature, group activities are important in individuals’ lives. Due to the different interests and priorities of individuals, it is difficult to find places that are ideal for all members of a group. In this study, a context-aware group-oriented location recommendation system is proposed based on a random walk algorithm. The proposed approach considers three different contexts, namely users’ contexts (i.e., social relationships, personal preferences), location context (i.e., category, popularity, capacity, and spatial proximity), and environmental context (i.e., weather, day of the week). Three graph models of LBSNs are constructed to perform a random walk with restart (RWR) algorithm in which a user-location graph is considered as the basis. In addition, two group recommendation strategies are used. One is an aggregated prediction strategy, and the other is derived from extending the RWR to the group. After performing the RWR algorithm, the group profile and location popularity are used to improve the effectiveness of the recommendation. The performance of the proposed system is examined using the Gowalla dataset related to the city of London from March 2009 to July 2011. The results indicate that the RWR algorithm outperforms popularity-based, collaborative filtering and content-based filtering. In addition, using the group profile and location popularity significantly improves the accuracy of recommendation. On the user-location graph, the number of users with recommendations matching the test data increases by 1.18 times, while the precision of creating relevant recommendations is increased by 3.4 times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.