A B S T R A C TObesity is a global health issue that affects 2.1 billion people worldwide and has an economic impact of approximately $2 trillion. It is a disease that can make the aging process worse by impairing physical function, which can lead to people becoming more frail and immobile. Nevertheless, it is envisioned that technology can be used to aid in motivating behavioural changes to combat this preventable condition. The ubiquitous presence of wearable and mobile devices has enabled a continual stream of quantifiable data (e.g. physiological signals) to be collected about ourselves. This data can then be used to monitor physical activity to aid in self-reflection and motivation to alter behaviour. However, such information is susceptible to noise interference, which makes processing and extracting knowledge from such data challenging. This paper posits our approach that collects and processes physiological data that has been collected from tri-axial accelerometers and a heart-rate monitor, to detect physical activity. Furthermore, an end-user use case application has also been proposed that integrates these findings into a smartwatch visualization. This provides a method of visualising the results to the user so that they are able to gain an overview of their activity. The goal of the paper has been to evaluate the performance of supervised machine learning in distinguishing physical activity. This has been achieved by (i) focusing on wearable sensors to collect data and using our methodology to process this raw lifelogging data so that features can be extracted/selected. (ii) Undertaking an evaluation between ten supervised learning classifiers to determine their accuracy in detecting human activity. To demonstrate the effectiveness of our method, this evaluation has been performed across a baseline method and two other methods. (iii) Undertaking an evaluation of the processing time of the approach and the smartwatch battery and network cost analysis between transferring data from the smartwatch to the phone. The results of the classifier evaluations indicate that our approach shows an improvement on existing studies, with accuracies of up to 99% and sensitivities of 100%.
This work introduces a set of scalable algorithms to identify patterns of human daily behaviors. These patterns are extracted from multivariate temporal data that have been collected from smartphones. We have exploited sensors that are available on these devices, and have identified frequent behavioral patterns with a temporal granularity, which has been inspired by the way individuals segment time into events. These patterns are helpful to both end-users and third parties who provide services based on this information. We have demonstrated our approach on two real-world datasets and showed that our pattern identification algorithms are scalable. This scalability makes analysis on resource constrained and small devices such as smartwatches feasible. Traditional data analysis systems are usually operated in a remote system outside the device. This is largely due to the lack of scalability originating from software and hardware restrictions of mobile/wearable devices. By analyzing the data on the device, the user has the control over the data, i.e. privacy, and the network costs will also be removed.
As the availability and use of wearables increases, they are becoming a promising platform for context sensing and context analysis. Smartwatches are a particularly interesting platform for this purpose, as they offer salient advantages, such as their proximity to the human body. However, they also have limitations associated with their small form factor, such as processing power and battery life, which makes it difficult to simply transfer smartphone-based context sensing and prediction models to smartwatches. In this paper, we introduce an energy-efficient, generic, integrated framework for continuous context sensing and prediction on smartwatches. Our work extends previous approaches for context sensing and prediction on wrist-mounted wearables that perform predictive analytics outside the device. We offer a generic sensing module and a novel energy-efficient, on-device prediction module that is based on a semantic abstraction approach to convert sensor data into meaningful information objects, similar to human perception of a behavior. Through six evaluations, we analyze the energy efficiency of our framework modules, identify the optimal file structure for data access and demonstrate an increase in accuracy of prediction through our semantic abstraction method. The proposed framework is hardware independent and can serve as a reference model for implementing context sensing and prediction on small wearable devices beyond smartwatches, such as body-mounted cameras.
Abstract:The ubiquity and affordability of mobile and wearable devices has enabled us to continually and digitally record our daily life activities. Consequently, we are seeing the growth of data collection experiments in several scientific disciplines. Although these have yielded promising results, mobile and wearable data collection experiments are often restricted to a specific configuration that has been designed for a unique study goal. These approaches do not address all the real-world challenges of "continuous data collection" systems. As a result, there have been few discussions or reports about such issues that are faced when "implementing these platforms" in a practical situation. To address this, we have summarized our technical and user-centric findings from three lifelogging and Quantified Self data collection studies, which we have conducted in real-world settings, for both smartphones and smartwatches. In addition to (i) privacy and (ii) battery related issues; based on our findings we recommend further works to consider (iii) implementing multivariate OPEN ACCESS J. Sens. Actuator Netw. 2015, 4 316 reflection of the data; (iv) resolving the uncertainty and data loss; and (v) consider to minimize the manual intervention required by users. These findings have provided insights that can be used as a guideline for further Quantified Self or lifelogging studies.
Annotations allow end users to augment digital items with information, which can then be exploited for search and retrieval. We are currently extending Europeana, a platform which links to millions of digital items in European institutions, with an annotation mechanism that exposes annotations as linked data and enriches newly created annotations with links to contextually relevant resources on the Web. In two demos we showcase how we integrated that kind of content augmentation into two clients that allow users to annotate videos and historic maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.