Coordination complexes have been used extensively as the photoactive component of artificial photosynthetic devices. While polynuclear arrays increase the probability of light absorption, the incorporation of the stereogenic Ru(2,2'-bipyridine)(3)(2+) motif gives rise to diastereomeric mixtures whereas the achiral Ru(2,2':6',2"-terpyridine)(2)(2+) motif creates stereopure polynuclear complexes. Thus, polynuclear arrays composed of ruthenium(II) complexes of tridentate ligands are the targets of choice for light-harvesting devices. As Ru(II) complexes of tridentate ligands have short excited state lifetimes at room temperature (r. t.), considerable effort has been focused on trying to increase their r. t. luminescence lifetime for practical applications. This tutorial review will report on the sophisticated synthetic strategies currently in use to enhance the room temperature photophysical properties of Ru(II) complexes of tridentate ligands.
A family of tridendate ligands 1 a-e, based on the 2-aryl-4,6-di(2-pyridyl)-s-triazine motif, was prepared along with their hetero- and homoleptic Ru(II) complexes 2 a-e ([Ru(tpy)(1 a-e)](2+); tpy=2,2':6',2"-terpyridine) and 3 a-e ([(Ru(1 a-e)(2)](2+)), respectively. The ligands and their complexes were characterized by (1)H NMR spectroscopy, ES-MS, and elemental analysis. Single-crystal X-ray analysis of 2 a and 2 e demonstrated that the triazine core is nearly coplanar with the non-coordinating ring, with dihedral angles of 1.2 and 18.6 degrees, respectively. The redox behavior and electronic absorption and luminescence properties (both at room temperature in liquid acetonitrile and at 77 K in butyronitrile rigid matrix) were investigated. Each species undergoes one oxidation process centered on the metal ion, and several (three for 2 a-e and four for 3 a-e) reduction processes centered on the ligand orbitals. All compounds exhibit intense absorption bands in the UV region, assigned to spin-allowed ligand-centered (LC) transitions, and moderately intense spin-allowed metal-to-ligand charge-transfer (MLCT) absorption bands in the visible region. The compounds exhibit relatively intense emissions, originating from triplet MLCT levels, both at 77 K and at room temperature. The incorporation of triazine rings and the near planarity of the noncoordinating ring increase the luminescence lifetimes of the complexes by lowering the energy of the (3)MLCT state and creating a large energy gap to the dd state.
A dicopper(I) double helicate oxidizes and rapidly reorganises to form a stable pentadentate dicopper(II) double helicate due to the proximity of pendant pyridyl rings as studied by electrochemical and structural analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.