It has been hypothesized that horizontal gene/chromosome transfer and parasexual recombination following hyphal fusion between different strains may contribute to the emergence of wide genetic variability in plant pathogenic and other fungi. However, the significance of vegetative (heterokaryon) incompatibility responses, which commonly result in cell death, in preventing these processes is not known. In this study, we have assessed this issue following different types of hyphal fusion during colony initiation and in the mature colony. We used vegetatively compatible and incompatible strains of the common bean pathogen Colletotrichum lindemuthianum in which nuclei were labelled with either a green or red fluorescent protein in order to microscopically monitor the fates of nuclei and heterokaryotic cells following hyphal fusion. As opposed to fusion of hyphae in mature colonies that resulted in cell death within 3 h, fusions by conidial anastomosis tubes (CAT) between two incompatible strains during colony initiation did not induce the vegetative incompatibility response. Instead, fused conidia and germlings survived and formed heterokaryotic colonies that in turn produced uninucleate conidia that germinated to form colonies with phenotypic features different to those of either parental strain. Our results demonstrate that the vegetative incompatibility response is suppressed during colony initiation in C. lindemuthianum. Thus, CAT fusion may allow asexual fungi to increase their genetic diversity, and to acquire new pathogenic traits.
Colletotrichum lindemuthianum, causal agent of anthracnose in the common bean, has wide genetic variability. Differential bean cultivars and morphological and physiological characteristics were used to analyze 74 isolates of C. lindemuthianum collected in two counties in the state of Minas Gerais, Brazil. Six different races were found, with a predominance of race 65 at both locations. Isolates were classified according to their sensitivities to the fungicide thiophanate-methyl, normally used in the control of common bean anthracnose. In all, ≈10% of isolates were resistant to the fungicide in vitro. Characteristics such as indexes of mycelia growth rate, colony diameter, sporulation capacity, and percentage of germination demonstrated the high genetic variability of C. lindemuthianum. We also observed variation in conidial cytology. The conidia of most isolates showed septa formation after germination, in contrast to septa absence, previously reported in the literature. Sexual and asexual reproduction were evaluated for mechanisms that may contribute in the generation of variability in C. lindemuthianum. Conidial anastomosis tubes were commonly found, indicating that asexual reproduction can help increase variability in this species. Information from this study confirmed high variability in C. lindemuthianum and will guide future studies in basic knowledge and applied technologies.
Anthracnose caused by Colletotrichum lindemuthianum is an important disease of common bean, resulting in major economic losses worldwide. Genetic diversity of the C. lindemuthianum population contributes to its ability to adapt rapidly to new sources of host resistance. The origin of this diversity is unknown, but sexual recombination, via the Glomerella teleomorph, is one possibility. This study tested the hypothesis that Glomerella strains that are frequently recovered from bean anthracnose lesions represent the teleomorph of C. lindemuthianum. A large collection of Glomerella isolates could be separated into two groups based on phylogenetic analysis, morphology, and pathogenicity to beans. Both groups were unrelated to C. lindemuthianum. One group clustered with the C. gloeosporioides species complex and produced mild symptoms on bean tissues. The other group, which belonged to a clade that included the cucurbit anthracnose pathogen C. magna, caused no symptoms. Individual ascospores recovered from Glomerella perithecia gave rise to either fertile (perithecial) or infertile (conidial) colonies. Some pairings of perithecial and conidial strains resulted in induced homothallism in the conidial partner, while others led to apparent heterothallic matings. Pairings involving two perithecial, or two conidial, colonies produced neither outcome. Conidia efficiently formed conidial anastomosis tubes (CATs), but ascospores never formed CATs. The Glomerella strains formed appressoria and hyphae on the plant surface, but did not penetrate or form infection structures within the tissues. Their behavior was similar whether the beans were susceptible or resistant to anthracnose. These same Glomerella strains produced thick intracellular hyphae, and eventually acervuli, if host cell death was induced. When Glomerella was co-inoculated with C. lindemuthianum, it readily invaded anthracnose lesions. Thus, the hypothesis was not supported: Glomerella strains from anthracnose lesions do not represent the teleomorphic phase of C. lindemuthianum, and instead appear to be bean epiphytes that opportunistically invade and sporulate in the lesions.
ABSTRACT. The fungus Pseudocercospora griseola, the causal agent of angular leaf spot in the common bean (Phaseolus vulgaris L.), exhibits a broad pathogenic variability that complicates the development of resistant cultivars. For breeding programs to successfully obtain common bean cultivars with durable resistance, knowing the aggressiveness of different strains, as well as the mechanisms of genetic resistance, is important. The aims of this study were to study the variation within race 63.63 by evaluating the aggressiveness of different strains, to analyze the genetic resistance of common bean lines to P. griseola, and to ascertain the implications for genetic improvement in obtaining resistance in this pathosystem. Four strains, collected from different locations, were inoculated in three groups of common bean lines in a greenhouse, and the severity of the disease was subsequently evaluated. Statistical analyses were carried out using the diallel method, which provided information on the vertical and horizontal resistance of host plants, in addition to information 5045 Variability in strains of Pseudocercospora griseola ©FUNPEC-RP www.funpecrp.com.br Genetics and Molecular Research 14 (2): 5044-5053 (2015) regarding the aggressiveness of the strains. The aggressiveness of P. griseola differed between the strains of race 63.63. The diallel method proved to be promising for the identification of horizontal and vertical resistance in the common bean-P. griseola pathosystem, with a predominance of horizontal resistance. Gene pyramiding, using marker-assisted selection, may not be the most effective strategy for obtaining durable resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.