OBJECTIVEDiabetic peripheral neuropathy (DPN) has hitherto been considered a disease of the peripheral nervous system only, with central nervous system (CNS) involvement largely overlooked. The aim of this study was to investigate any differences in brain structure in subjects with DPN.
RESEARCH DESIGN AND METHODSThirty-six subjects with type 1 diabetes (No DPN [n = 18], Painful DPN [n = 9], Painless DPN [n = 9]) underwent neurophysiological assessment to quantify the severity of DPN. All subjects, including 18 healthy volunteers (HVs), underwent volumetric brain magnetic resonance imaging at 3 Tesla.
RESULTSAdjusted peripheral gray matter volume was statistically significantly lower in subjects with painless and painful DPN (mean 599.6 mL [SEM 9.8 mL] and 585.4 mL [10.0 mL], respectively) compared with those with No DPN (626.5 mL [5.7 mL]) and HVs (639.9 mL [7.2 mL]; ANCOVA, P = 0.001). The difference in adjusted peripheral gray matter volume between subjects with No DPN and HVs and those with Painful DPN and Painless DPN was not statistically significant (P = 0.16 and 0.30, respectively). Voxel-based morphometry analyses revealed greater localized volume loss in the primary somatosensory cortex, supramarginal gyrus, and cingulate cortex (corrected P < 0.05) in DPN subjects.
CONCLUSIONSThis is the first study to focus on structural changes in the brain associated with DPN. Our findings suggest increased peripheral gray matter volume loss, localized to regions involved with somatosensory perception in subjects with DPN. This may have important implications for the long-term prognosis of DPN.Diabetic peripheral neuropathy (DPN) is a common, debilitating, and distressing complication that develops in up to 30-50% of patients with diabetes (1). A painless distal symmetrical sensorimotor neuropathy, which increases the risk of foot ulceration and subsequent amputation, develops in most patients. In a significant proportion of patients, a chronic painful condition also develops, which can result in considerable disability and suffering. Although various vascular and metabolic factors (2) have been implicated, a complete understanding of the pathogenesis of DPN remains elusive (3,4). DPN has hitherto been considered a disease of the peripheral
ObjectivesThere is increased interest in cannabinoids for cancer pain management and legislative changes are in progress in many countries. This study aims to determine the beneficial and adverse effects of cannabis/cannabinoids compared with placebo/other active agents for the treatment of cancer-related pain in adults.MethodsSystematic review and meta-analysis to identify randomised controlled trials of cannabinoids compared with placebo/other active agents for the treatment of cancer-related pain in adults to determine the effect on pain intensity (primary outcome) and adverse effects, including dropouts. Searches included Embase, MEDLINE, PsycINFO, Web of Science, ClinicalTrials.gov, Cochrane and grey literature. Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed.ResultsWe identified 2805 unique records, of which six randomised controlled trials were included in this systematic review (n=1460 participants). Five studies were included in the meta-analysis (1442 participants). All had a low risk of bias. There was no difference between cannabinoids and placebo for the difference in the change in average Numeric Rating Scale pain scores (mean difference −0.21 (−0.48 to 0.07, p=0.14)); this remained when only phase III studies were meta-analysed: mean difference −0.02 (−0.21 to 0.16, p=0.80). Cannabinoids had a higher risk of adverse events when compared with placebo, especially somnolence (OR 2.69 (1.54 to 4.71), p<0.001) and dizziness (OR 1.58 (0.99 to 2.51), p=0.05). No treatment-related deaths were reported. Dropouts and mortality rates were high.ConclusionsStudies with a low risk of bias showed that for adults with advanced cancer, the addition of cannabinoids to opioids did not reduce cancer pain.Trial registration numberCRD42018107662.
Despite disease control and supportive care, intensively treated long-term myeloma survivors have significantly compromised HRQoL related to symptom burden. Systematic assessment is routinely indicated in advanced phase myeloma, even when disease activity is stable. Further studies should investigate the utility of interventional strategies and the relationship of cytokines with symptoms.
Diabetic distal symmetrical peripheral polyneuropathy (DSP) results in decreased somatosensory cortical gray matter volume, indicating that the disease process may produce morphological changes in the brains of those affected. However, no study has examined whether changes in brain volume alter the functional organization of the somatosensory cortex and how this relates to the various painful DSP clinical phenotypes. In this case-controlled, multimodal brain MRI study of 44 carefully phenotyped subjects, we found significant anatomical and functional changes in the somatosensory cortex. Subjects with painful DSP insensate have the lowest somatosensory cortical thickness, with expansion of the area representing pain in the lower limb to include face and lip regions. Furthermore, there was a significant relationship between anatomical and functional changes within the somatosensory cortex and severity of the peripheral neuropathy. These data suggest a dynamic plasticity of the brain in DSP driven by the neuropathic process. It demonstrates, for the first time in our knowledge, a pathophysiological relationship between a clinically painful DSP phenotype and alterations in the somatosensory cortex.
There is low-level evidence of benefit with somatostatin analogues in the symptomatic treatment of MBO. However, high-level evidence from trials with low risk of bias found no benefit of somatostatin analogues for their primary outcome. There is debate regarding the clinically relevant study end point for symptom control in MBO and when it should be measured. The role of somatostatin analogues in this clinical situation requires further adequately powered, well-designed trials with agreed clinically important end points and measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.