Background Ileus is common after elective colorectal surgery, and is associated with increased adverse events and prolonged hospital stay. The aim was to assess the role of non‐steroidal anti‐inflammatory drugs (NSAIDs) for reducing ileus after surgery. Methods A prospective multicentre cohort study was delivered by an international, student‐ and trainee‐led collaborative group. Adult patients undergoing elective colorectal resection between January and April 2018 were included. The primary outcome was time to gastrointestinal recovery, measured using a composite measure of bowel function and tolerance to oral intake. The impact of NSAIDs was explored using Cox regression analyses, including the results of a centre‐specific survey of compliance to enhanced recovery principles. Secondary safety outcomes included anastomotic leak rate and acute kidney injury. Results A total of 4164 patients were included, with a median age of 68 (i.q.r. 57–75) years (54·9 per cent men). Some 1153 (27·7 per cent) received NSAIDs on postoperative days 1–3, of whom 1061 (92·0 per cent) received non‐selective cyclo‐oxygenase inhibitors. After adjustment for baseline differences, the mean time to gastrointestinal recovery did not differ significantly between patients who received NSAIDs and those who did not (4·6 versus 4·8 days; hazard ratio 1·04, 95 per cent c.i. 0·96 to 1·12; P = 0·360). There were no significant differences in anastomotic leak rate (5·4 versus 4·6 per cent; P = 0·349) or acute kidney injury (14·3 versus 13·8 per cent; P = 0·666) between the groups. Significantly fewer patients receiving NSAIDs required strong opioid analgesia (35·3 versus 56·7 per cent; P < 0·001). Conclusion NSAIDs did not reduce the time for gastrointestinal recovery after colorectal surgery, but they were safe and associated with reduced postoperative opioid requirement.
Background Postoperative acute kidney injury (AKI) is a common complication of major gastrointestinal surgery with an impact on short- and long-term survival. No validated system for risk stratification exists for this patient group. This study aimed to validate externally a prognostic model for AKI after major gastrointestinal surgery in two multicentre cohort studies. Methods The Outcomes After Kidney injury in Surgery (OAKS) prognostic model was developed to predict risk of AKI in the 7 days after surgery using six routine datapoints (age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker). Validation was performed within two independent cohorts: a prospective multicentre, international study (‘IMAGINE’) of patients undergoing elective colorectal surgery (2018); and a retrospective regional cohort study (‘Tayside’) in major abdominal surgery (2011–2015). Multivariable logistic regression was used to predict risk of AKI, with multiple imputation used to account for data missing at random. Prognostic accuracy was assessed for patients at high risk (greater than 20 per cent) of postoperative AKI. Results In the validation cohorts, 12.9 per cent of patients (661 of 5106) in IMAGINE and 14.7 per cent (106 of 719 patients) in Tayside developed 7-day postoperative AKI. Using the OAKS model, 558 patients (9.6 per cent) were classified as high risk. Less than 10 per cent of patients classified as low-risk developed AKI in either cohort (negative predictive value greater than 0.9). Upon external validation, the OAKS model retained an area under the receiver operating characteristic (AUC) curve of range 0.655–0.681 (Tayside 95 per cent c.i. 0.596 to 0.714; IMAGINE 95 per cent c.i. 0.659 to 0.703), sensitivity values range 0.323–0.352 (IMAGINE 95 per cent c.i. 0.281 to 0.368; Tayside 95 per cent c.i. 0.253 to 0.461), and specificity range 0.881–0.890 (Tayside 95 per cent c.i. 0.853 to 0.905; IMAGINE 95 per cent c.i. 0.881 to 0.899). Conclusion The OAKS prognostic model can identify patients who are not at high risk of postoperative AKI after gastrointestinal surgery with high specificity. Presented to Association of Surgeons in Training (ASiT) International Conference 2018 (Edinburgh, UK), European Society of Coloproctology (ESCP) International Conference 2018 (Nice, France), SARS (Society of Academic and Research Surgery) 2020 (Virtual, UK).
Importance: Individuals whose chronic pain is managed with opioids are at high risk of developing an opioid use disorder. Large data sets, such as electronic health records, are required for conducting studies that assist with identification and management of problematic opioid use. Objective: Determine whether regular expressions, a highly interpretable natural language processing technique, could automate a validated clinical tool (Addiction Behaviors Checklist) to expedite the identification of problematic opioid use in the electronic health record. Design: This cross-sectional study reports on a retrospective cohort with data analyzed from 2021 through 2023. The approach was evaluated against a blinded, manually reviewed holdout test set of 100 patients. Setting: The study used data from Vanderbilt University Medical Center's Synthetic Derivative, a de-identified version of the electronic health record for research purposes. Participants: This cohort comprised 8,063 individuals with chronic pain. Chronic pain was defined by International Classification of Disease codes occurring on at least two different days. We collected demographic, billing code, and free-text notes from patients' electronic health records. Main Outcomes and Measures: The primary outcome was the evaluation of the automated method in identifying patients demonstrating problematic opioid use and its comparison to opioid use disorder diagnostic codes. We evaluated the methods with F1 scores and areas under the curve - indicators of sensitivity, specificity, and positive and negative predictive value. Results: The cohort comprised 8,063 individuals with chronic pain (mean [SD] age at earliest chronic pain diagnosis, 56.2 [16.3] years; 5081 [63.0%] females; 2982 [37.0%] male patients; 76 [1.0%] Asian, 1336 [16.6%] Black, 56 [1.0%] other, 30 [0.4%] unknown race patients, and 6499 [80.6%] White; 135 [1.7%] Hispanic/Latino, 7898 [98.0%] Non-Hispanic/Latino, and 30 [0.4%] unknown ethnicity patients). The automated approach identified individuals with problematic opioid use that were missed by diagnostic codes and outperformed diagnostic codes in F1 scores (0.74 vs. 0.08) and areas under the curve (0.82 vs 0.52). Conclusions and Relevance: This automated data extraction technique can facilitate earlier identification of people at-risk for, and suffering from, problematic opioid use, and create new opportunities for studying long-term sequelae of opioid pain management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.