A preconcentrating/voltammetric multiwalled carbon nanotube modified glassy carbon electrode (MWCNT-GCE) has been developed for stripping analysis of carbendazim (Methyl Benzimidazol-2-yl Carbamate-MBC), based on dispersing MWCNT in water. The effect of experimental variables, such as the dispersion and loading of MWCNT, was assessed. A quasi-reversible behavior for MBC in acetic acid/acetate buffer 0.1 mol L À1 (pH 4.7) was verified and its high effective pre-concentration was attributed to the high adsorption capability and enormous surface area of the MWCNT. No evidence of carry-over effect, combined with the easiness of electrode preparation, led to the development of a highly sensitive and reliable method with an experimental work range from 0.256 to 3.11 mmol L À1 with a detection limit of 10.5 ppb for a short (60 s) accumulation period. Measurement of MBC in a river water sample was demonstrated. The accuracy of the method for real sample analysis was assessed by estimating the apparent recovery (93 AE 2.9% and 86 AE 4.1% for 4.3 Â 10 À7 mol L À1 ) for a MBC spiked river water sample.
This study presents an automatic analysis system that does not require the use of standard solutions. The system uses an electrochemical flow cell for in line generation of the standards, and operates under the standard addition technique. The versatility of this system was demonstrated by the development of a one key touch fully automatic method for the determination of total available chlorine in real samples. The extremely simple, accurate and inexpensive method was based simply on the biamperometric monitoring of the well known redox reaction of chlorine with iodide ions in a flow-batch system, where the produced iodine (triiodide ions) generates an electrical current proportional to the chlorine concentration in the sample. The flow-batch parameters were optimized to maximize the sensitivity without losses on the precision of the analysis. An excellent linear dependence between the biamperometric signal and the chlorine concentration for the standard additions and a good agreement between the proposed approach and a reference method were obtained. The method was successfully applied to determine chlorine in several different bleach and chlorinated water samples (r=0.9995, LOD=8.261 x 10(-7) mol L(-1)) and could be easily extended to other oxidants and samples. Comparison to a reference method and recoveries close to 100% demonstrated the reliability of the proposed method. In addition, low residue disposal and reagent consumption, allied with high accuracy and precision, make it very promising for routine applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.