The purpose of this study was to assess whether a lymphocyte heat shock response and altered heat tolerance to ex vivo heat shock is evident during acclimation. We aimed to use flow cytometry to assess the CD3(+)CD4(+) T lymphocyte cell subset. We further aimed to induce acclimation using moderately stressful daily exercise-heat exposures to achieve acclimation. Eleven healthy males underwent 11 days of heat acclimation. Subjects walked for 90 min (50 ± 8% VO(2max)) on a treadmill (3.5 mph, 5% grade), in an environmental chamber (33°C, 30-50% relative humidity). Rectal temperature (°C), heart rate (in beats per minute), rating of perceived exertion , thermal ratings, hydration state, and sweat rate were measured during exercise and recovery. On days 1, 4, 7, 10, and 11, peripheral blood mononuclear cells were isolated from pre- and post-exercise blood samples. Intracellular and surface HSP70 (SPA-820PE, Stressgen, Assay Designs), and annexin V (ab14085, Abcam Inc.), as a marker of early apoptosis, were measured on CD3(+) and CD4(+) (sc-70624, sc-70670, Santa Cruz Biotechnology) gated lymphocytes. On day 10, subjects experienced 28 h of sleep loss. Heat acclimation was verified with decreased post-exercise rectal temperature, heart rate, and increased sweat rate on day 11, versus day 1. Heat acclimation was achieved in the absence of significant changes in intracellular HSP70 mean fluorescence intensity and percent of HSP70(+) lymphocytes during acclimation. Furthermore, there was no increased cellular heat tolerance during secondary ex vivo heat shock of the lymphocytes acquired from subjects during acclimation. There was no effect of a mild sleep loss on any variable. We conclude that our protocol successfully induced physiological acclimation without induction of cellular heat shock responses in lymphocytes and that added mild sleep loss is not sufficient to induce a heat shock response.
The feasibility of detecting mild dehydration by using autonomic responses to cognitive stress was studied. To induce cognitive stress, subjects (n = 17) performed the Stroop task, which comprised four minutes of rest and four minutes of test. Nine indices of autonomic control based on electrodermal activity (EDA) and pulse rate variability (PRV) were obtained during both the rest and test stages of the Stroop task. Measurements were taken on three consecutive days in which subjects were "wet" (not dehydrated) and "dry" (experiencing mild dehydration caused by fluid restriction). Nine approaches were tested for classification of "wet" and "dry" conditions:(1) linear (LDA) and (2) quadratic discriminant analysis (QDA), (3) logistic regression, (4) support vector machines (SVM) with cubic, (5) fine Gaussian kernel, (6) medium Gaussian kernel, (7) a k-nearest neighbor (KNN) classifier, (8) decision trees, and (9) subspace ensemble of KNN classifiers (SE-KNN). The classification models were tested for all possible combinations of the nine indices of autonomic nervous system control, and their performance was assessed by using leave-one-subject-out cross-validation. An overall accuracy of mild dehydration detection was 91.2% when using the cubic SE-KNN and indices obtained only at rest, and the accuracy was 91.2% when using the cubic SVM classifiers and indices obtained only at test. Accuracy was 86.8% when rest-to-test increments in the autonomic indices were used along with the KNN and QDA classifiers. In summary, measures of autonomic function based on EDA and PRV are suitable for detecting mild dehydration and could potentially be used for the noninvasive testing of dehydration.
Cold water immersion (CWI) purportedly reduces inflammation and improves muscle recovery post exercise, yet its effectiveness in specific contexts (ultraendurance) remains unclear. Thus, our aim was to study hematological profiles, systemic inflammation, and muscle damage responses to a specific post race CWI (vs. control) during recovery after the Ironman® World Championship, a culmination of ~100,000 athletes competing in global qualifying Ironman® events each year. Twenty-nine competitors were randomized into CWI or control (CON) group. Physiological parameters and blood samples were taken pre race (BASE), after intervention (POST), and 24 (+1DAY) and 48 hours (+2DAY) following the race. Muscle damage markers (plasma myoglobin, serum creatine kinase) were elevated at POST, +1DAY, and +2DAY, while inflammatory cytokines IL-6, IL-8, and IL-10 and total leukocyte counts were increased only at POST. CWI had no effect on these markers. Numbers of the most abundant circulating cell type, neutrophils, were elevated at POST more so in CWI (p<0.05, vs. CON). Despite that neutrophil counts may be a sensitive marker to detect subtle effects, CWI does not affect recovery markers 24- and 48-hours post race (vs. CON). Overall, we determine that our short CWI protocol was not sufficient to improve recovery. Novelty: • Ironman World Championship event increased circulating muscle damage markers, inflammatory markers, and hematological parameters, including circulating immune cell sub-populations that recover 24-48 hours after the race. • 12-min CWI post ultraendurance event affects the absolute numbers of neutrophils acutely, post race (vs. CON), but does not impact recovery 24- and 48-hours post race.
Beneficial effects of blackcurrant supplementation on bone metabolism in mice has recently been demonstrated, but no studies are available in humans. The current study aimed to examine the dose-dependent effects of blackcurrant in preventing bone loss and the underlying mechanisms of action in adult women. Forty peri- and early postmenopausal women were randomly assigned into one of three treatment groups for 6 months: (1) a placebo (control group, n = 13); (2) 392 mg/day of blackcurrant powder (low blackcurrant, BC, group, n = 16); and (3) 784 mg/day of blackcurrant powder (high BC group, n = 11). The significance of differences in outcome variables was tested by repeated-measures ANOVA with treatment and time as between- and within-subject factors, respectively. Overall, blackcurrant supplementation decreased the loss of whole-body bone mineral density (BMD) compared to the control group (p < 0.05), though the improvement of whole-body BMD remained significant only in the high BC group (p < 0.05). Blackcurrant supplementation also led to a significant increase in serum amino-terminal propeptide of type 1 procollagen (P1NP), a marker of bone formation (p < 0.05). These findings suggest that daily consumption of 784 mg of blackcurrant powder for six months mitigates the risk of postmenopausal bone loss, potentially through enhancing bone formation. Further studies of larger samples with various skeletal conditions are warranted to confirm these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.