The extracellular matrix (ECM) of the developing heart contains numerous molecules that together form a dynamic environment that plays an active and crucial role in the regulation of cellular events. ECM molecules found in the heart include hyaluronan, fibronectin, fibrillin, proteoglycans, and collagens. Tight regulation of the spatiotemporal expression, and the proteolytic processing of ECM components by proteases including members of the ADAMTS family, is essential for normal cardiac development. Perturbation of expression of genes involved in matrix composition and remodeling can interfere with a myriad of events involved in the formation of the four-chambered heart and result in prenatal lethality and/or cardiac malformations as seen in humans with congenital heart disease (CHD). In this review we will briefly summarize what is known about the specific importance of some of the components of the ECM in relation to the cardiovascular development.
The right ventricle and outflow tract of the developing heart are derived from mesodermal progenitor cells from the second heart field (SHF). SHF cells have been characterized by expression of the transcription factor Islet-1 (Isl1). Although Isl1 expression has also been reported in the venous pole, the specific contribution of the SHF to this part of the heart is unknown. Here we show that Isl1 is strongly expressed in the dorsal mesenchymal protrusion (DMP), a non-endocardially-derived mesenchymal structure involved in atrioventricular septation. We further demonstrate that abnormal development of the SHF-derived DMP is associated with the pathogenesis of atrioventricular septal defects. These results identify a novel role for the SHF. (Circ Res. 2007;101:971-974.)
Approximately 5 million people are affected with aortic valve disease (AoVD) in the United States. The most common treatment is aortic valve (AoV) replacement surgery, however, replacement valves are susceptible to failure, necessitating additional surgeries. The molecular mechanisms underlying disease progression and late AoV calcification are not well understood. Recent studies suggest that genes involved in bone and cartilage development play an active role in osteogenic-like calcification in human calcific AoVD (CAVD). In an effort to define the molecular pathways involved in AoVD progression and calcification, expression of markers of valve mesenchymal progenitors, chondrogenic precursors, and osteogenic differentiation was compared in pediatric non-calcified and adult calcified AoV specimens. Valvular interstitial cell (VIC) activation, extracellular matrix (ECM) disorganization, and markers of valve mesenchymal and skeletal chondrogenic progenitor cells were observed in both pediatric and adult AoVD. However, activated BMP signaling, increased expression of cartilage and bone-type collagens, and increased expression of the osteogenic marker Runx2 are observed in adult diseased AoVs and are not observed in the majority of pediatric diseased valves, representing a marked distinction in the molecular profile between pediatric and adult diseased AoVs. The combined evidence suggests that an actively regulated osteochondrogenic disease process underlies the pathological changes affecting AoVD progression, ultimately resulting in stenotic AoVD. Both pediatric and adult diseased AoVs express protein markers of valve mesenchymal and chondrogenic progenitor cells while adult diseased AoVs also express proteins involved in osteogenic calcification. These findings provide specific molecular indicators of AoVD progression, which may lead to identification of early disease markers and the development of potential therapeutics.
During embryogenesis the heart valves develop from undifferentiated mesenchymal endocardial cushions (EC), and activated interstitial cells of adult diseased valves share characteristics of embryonic valve progenitors. Twist1, a class II basic-helix-loop-helix (bHLH) transcription factor, is expressed during early EC development and is downregulated later during valve remodeling. The requirements for Twist1 down-regulation in the remodeling valves and the consequences of prolonged Twist1 activity were examined in transgenic mice with persistent expression of Twist1 in developing and mature valves. Persistent Twist1 expression in the remodeling valves leads to increased valve cell proliferation, increased expression of Tbx20, and increased extracellular matrix (ECM) gene expression, characteristic of early valve progenitors. Among the ECM genes predominant in the EC, Col2a1 was identified as a direct transcriptional target of Twist1. Increased Twist1 expression also leads to dysregulation of fibrillar collagen and periostin expression, as well as enlarged hypercellular valve leaflets prior to birth. In human diseased aortic valves, increased Twist1 expression and cell proliferation are observed adjacent to nodules of calcification. Overall, these data implicate Twist1 as a critical regulator of valve development and suggest that Twist1 influences ECM production and cell proliferation during disease.
To expand our insight into cardiac development, a comparative DNA microarray analysis was performed using tissues from the atrioventricular junction (AVJ) and ventricular chambers of mouse hearts at embryonic day (ED) 10.5-11.0. This comparison revealed differential expression of approximately 200 genes, including cartilage link protein 1 (Crtl1). Crtl1 stabilizes the interaction between hyaluronan (HA) and versican, two extracellular matrix components essential for cardiac development. Immunohistochemical studies showed that, initially, Crtl1, versican, and HA are co-expressed in the endocardial lining of the heart, and in the endocardially derived mesenchyme of the AVJ and outflow tract (OFT). At later stages, this co-expression becomes restricted to discrete populations of endocardially derived mesenchyme. Histological analysis of the Crtl1-deficient mouse revealed a spectrum of cardiac malformations, including AV septal and myocardial defects, while expression studies showed a significant reduction in versican levels. Subsequent analysis of the hdf mouse, which carries an insertional mutation in the versican gene (CSPG2), demonstrated that haploinsufficient versican mice display septal defects resembling those seen in Crtl1(-/-) embryos, suggesting that reduced versican expression may contribute to a subset of the cardiac abnormalities observed in the Crtl1(-/-) mouse. Combined, these findings establish an important role for Crtl1 in heart development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.