Mutations in the neurokinin B pathway are relatively common as causes of hypogonadism. Although the neurokinin B pathway appears essential during early sexual development, its importance in sustaining the integrity of the hypothalamic-pituitary-gonadal axis appears attenuated over time.
Androgen insensitivity syndrome (AIS) is caused by mutations in the androgen receptor gene and is associated with a variety of phenotypes in 46,XY individuals, ranging from phenotypic women [complete form (CAIS)] to men with minor degrees of undervirilization or infertility [partial form (PAIS)]. We studied 32 subjects with male pseudohermaphroditism from 20 families (9 CAIS, 11 PAIS) with the following criteria for AIS: 46,XY karyotype, normal male basal and human chorionic gonadotropin-stimulated levels of serum testosterone and steroid precursors, gynecomastia at puberty, and, in prepubertal patients, a family history suggestive of X-linked inheritance. The entire coding region of the androgen receptor gene was analyzed, and mutations were found in all families with CAIS and in eight of 11 families with PAIS. Fifteen different mutations were identified, including five (S119X, T602P, L768V, I898F, and P904V) that have not been described previously. Detailed clinical and hormonal features were compared with genotype in 25 subjects with AIS and confirmed by mutational analysis. LH hormone levels and the LH x testosterone product were high in all postpubertal subjects with AIS. All subjects with PAIS maintained at postpubertal age the gender identity and social sex that was assigned to them in infancy, in contrast to other forms of pseudohermaphroditism.
Ten male pseudohermaphrodites with 17 beta-hydroxysteroid dehydrogenase 3 (17 beta-HSD3) deficiency were evaluated in 1 clinic with an average follow-up of 10.1 years. The diagnoses were made by demonstrating low to normal serum testosterone levels, high androstenedione levels, and high ratios of serum androstenedione to testosterone in the basal state or after treatment with human chorionic gonadotropin. The molecular features of the underlying mutations were identified in all 7 families. Two additional males in the same families are believed to be affected on the basis of history obtained from family members. All of the 46,XY individuals in these families were registered at birth and raised as females (despite the presence of ambiguous genitalia in all or most), and all virilized after the time of expected puberty due to a rise in serum testosterone to or toward the normal male range. The age at diagnosis varied from 4 to 37 years. Ten individuals were studied by the same psychologist, and change of gender role (social sex) from female to male occurred in 3 subjects and in the 2 presumed affected subjects not studied. The individual with the highest serum testosterone level maintained female sexual identity, and in 2 families some of the affected males changed gender role and others did not. Thus, while androgen action plays a role in the process, additional undefined psychological, social, and/or biologic factors must be determinants of gender identity/role behavior. Management of the 7 individuals who chose to maintain female sex roles included castration, clitoroplasty, vaginal enlargement procedures when appropriate, treatment of hirsutism, cricoid cartilage reduction, and estrogen replacement. Three of the 7 are married (2 twice), 1 is involved in a long-term heterosexual relationship, 1 is engaged to be married, and the other 2 are not married and not believed to be sexually active. The 3 subjects who changed gender role behavior to male underwent hypospadias repair, and 1 was given supplemental testosterone therapy. One of these men is divorced, and the other 2 (aged 29 and 35 years) are unmarried. The diagnosis in 8 of these subjects was made after the time of expected puberty; it is unclear whether the functional and social outcomes would have been different if the diagnosis had been made and therapy begun earlier in life.
Androgenic insensitivity syndrome is the most common cause of disorders of sexual differentiation in 46,XY individuals. It results from alterations in the androgen receptor gene, leading to a frame of hormonal resistance, which may present clinically under 3 phenotypes: complete (CAIS), partial (PAIS) or mild (MAIS). The androgen receptor gene has 8 exons and 3 domains, and allelic variants in this gene occur in all domains and exons, regardless of phenotype, providing a poor genotype - phenotype correlation in this syndrome. Typically, laboratory diagnosis is made through elevated levels of LH and testosterone, with little or no virilization. Treatment depends on the phenotype and social sex of the individual. Open issues in the management of androgen insensitivity syndromes includes decisions on sex assignment, timing of gonadectomy, fertility, physcological outcomes and genetic counseling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.