Understanding the mechanical properties of human teeth is important to clinical tooth preparation and to the development of "tooth-like" restorative materials. Previous studies have focused on the macroscopic fracture behavior of enamel and dentin. In the present study, we performed indentation studies to understand the microfracture and deformation and the microcrack-microstructure interactions of teeth. It was hypothesized that crack propagation would be influenced by enamel rods and the dentino-enamel junction (DEJ), and the mechanical properties would be influenced by enamel rod orientation and tooth-to-tooth variation. Twenty-eight human third molars were used for the measurement of hardness, fracture toughness, elastic modulus, and energy absorbed during indentation. We examined the effect of enamel rod orientation by propagating cracks in the occlusal surface, and in the axial section in directions parallel and perpendicular to the occlusal surface. The results showed that the cracks in the enamel axial section were significantly longer in the direction perpendicular to the occlusal surface than parallel. The cracks propagating toward the DEJ were always arrested and unable to penetrate dentin. The fracture toughness of enamel was not single-valued but varied by a factor of three as a function of enamel rod orientation. The elastic modulus of enamel showed a significant difference between the occlusal surface and the axial section. It is concluded that the cracks strongly interact with the DEJ and the enamel rods, and that the mechanical properties of teeth are functions of microstructural orientations; hence, single values of properties (e.g., a single toughness value or a single modulus value) should not be used without information on microstructural orientation.
Background-Potent stem/progenitor cells have been isolated from normal human dental pulps termed dental pulp stem cells (DPSCs). However, it is unknown whether these cells exist in inflamed pulps (IPs).
Part I of this three-part human study evaluated the formation of a new attachment apparatus (bone, cementum, and periodontal ligament) on pathologically exposed root surfaces in an open and closed environment. The most apical level of calculus on the root served as a histologic reference point to measure regeneration on root surfaces exposed to the oral environment. Attempts were made to initiate the formation of a new attachment apparatus by flap curettage, root planing, coronectomy, and submersion of vital roots beneath the mucosa. Nonsubmerged defects were treated by the same surgical technique and served as controls. Biopsies were obtained at 6 months and regeneration was evaluated histometrically by two investigators who were unaware of the treatment performed. Data from 9 patients with 25 submerged and 22 nonsubmerged defects were submitted for statistical analysis. Results indicate that a new attachment apparatus did not form in any of the 22 nonsubmerged teeth; a new attachment apparatus did form in a submerged environment (0.75 mm); significantly more new attachment apparatus (P less than 0.05), new cementum (P less than 0.01), new connective tissue (P less than 0.05), and new bone (P less than 0.02) formed in submerged defects; new cementum was cellular in nature and formed equally well on old cementum and dentin. Greater percent positive regeneration of the attachment apparatus and all component tissues occurred in submerged defects and no extensive root resorption, ankylosis, or pulp death was observed on submerged or nonsubmerged roots.
The results of this in vitro study demonstrate that retentive values of the Locator attachments are reduced significantly after multiple pulls. Although this reduction might not be noticeable to the patient, it is recommended that the clinician place and remove the overdenture multiple times before delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.