A revision of the nearly 8-year-old World Health Organization classification of the lymphoid neoplasms and the accompanying monograph is being published. It reflects a consensus among hematopathologists, geneticists, and clinicians regarding both updates to current entities as well as the addition of a limited number of new provisional entities. The revision clarifies the diagnosis and management of lesions at the very early stages of lymphomagenesis, refines the diagnostic criteria for some entities, details the expanding genetic/molecular landscape of numerous lymphoid neoplasms and their clinical correlates, and refers to investigations leading to more targeted therapeutic strategies. The major changes are reviewed with an emphasis on the most important advances in our understanding that impact our diagnostic approach, clinical expectations, and therapeutic strategies for the lymphoid neoplasms.
Diffuse large B-cell lymphoma (DLBCL) can be divided into prognostically important subgroups with germinal center Bcell-like (GCB), activated B-cell-like (ABC), and type 3 gene expression profiles using a cDNA microarray. Tissue microarray (TMA) blocks were created from 152 cases of DLBCL, 142 of which had been successfully evaluated by cDNA microarray (75 GCB, 41 ABC, and 26 type 3). Sections were stained with antibodies to CD10, bcl-6, MUM1, FOXP1, cyclin D2, and bcl-2. Expression of bcl-6 (P < .001) or CD10 (P ؍ .019) was associated with better overall survival (OS), whereas expression of MUM1 (P ؍ .009) or cyclin D2 (P < .001) was associated with worse OS. Cases were subclassified using CD10, bcl-6, and MUM1 expression, and 64 cases (42%) were considered GCB and 88 cases (58%) non-GCB. The 5-year OS for the GCB group was 76% compared with only 34% for the non-GCB group (P < .001), which is similar to that reported using the cDNA microarray. Bcl-2 and cyclin D2 were adverse predictors in the non-GCB group. In multivariate analysis, a high International Prognostic Index score (3-5) and the non-GCB phenotype were independent adverse predictors (P < .0001). In summary, immunostains can be used to determine the GCB and non-GCB subtypes of DLBCL and predict survival similar to the cDNA microarray. IntroductionDiffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma and accounts for 30% to 40% of new diagnoses. 1,2 However, DLBCL is heterogeneous both clinically and morphologically. Despite the use of anthracycline-based chemotherapy, durable remissions are achieved in only 40% to 50% of patients. 2 Therefore, it is important to identify at diagnosis those patients who may benefit from more aggressive or experimental therapies.Currently, the prognosis of patients with DLBCL is estimated using the clinical parameters of the International Prognostic Index (IPI). 3 However, these clinical parameters reflect a mixture of underlying biologic or genetic differences. In an attempt to elucidate these underlying factors, the prognostic value of numerous individual proteins has been studied by immunoperoxidase and molecular techniques. However, these studies have yielded conflicting results, and none have been validated in a large prospective trial. Therefore, in contrast to the IPI, these individual markers are generally not used in clinical practice for selecting therapy or predicting prognosis.Using a cDNA microarray, DLBCL can be divided into prognostically significant subgroups with germinal center B-celllike (GCB), activated B-cell-like (ABC), or type 3 gene expression profiles. 35,36 The GCB group has a significantly better survival than the ABC group. The type 3 group is heterogeneous and not well defined, but has a poor outcome similar to the ABC group. Another study using an oligonucleotide array has demonstrated that DLBCL can be divided into 2 molecularly distinct populations (cured and fatal/refractory). 37 Because this technology is expensive and not generally available, a sim...
DNA microarrays can be used to formulate a molecular predictor of survival after chemotherapy for diffuse large-B-cell lymphoma.
BACKGROUND Diffuse large B-cell lymphomas (DLBCLs) are phenotypically and genetically heterogeneous. Gene-expression profiling has identified subgroups of DLBCL (activated B-cell–like [ABC], germinal-center B-cell–like [GCB], and unclassified) according to cell of origin that are associated with a differential response to chemotherapy and targeted agents. We sought to extend these findings by identifying genetic subtypes of DLBCL based on shared genomic abnormalities and to uncover therapeutic vulnerabilities based on tumor genetics. METHODS We studied 574 DLBCL biopsy samples using exome and transcriptome sequencing, array-based DNA copy-number analysis, and targeted amplicon resequencing of 372 genes to identify genes with recurrent aberrations. We developed and implemented an algorithm to discover genetic subtypes based on the co-occurrence of genetic alterations. RESULTS We identified four prominent genetic subtypes in DLBCL, termed MCD (based on the co-occurrence of MYD88L265P and CD79B mutations), BN2 (based on BCL6 fusions and NOTCH2 mutations), N1 (based on NOTCH1 mutations), and EZB (based on EZH2 mutations and BCL2 translocations). Genetic aberrations in multiple genes distinguished each genetic subtype from other DLBCLs. These subtypes differed phenotypically, as judged by differences in gene-expression signatures and responses to immunochemotherapy, with favorable survival in the BN2 and EZB subtypes and inferior outcomes in the MCD and N1 subtypes. Analysis of genetic pathways suggested that MCD and BN2 DLBCLs rely on “chronic active” B-cell receptor signaling that is amenable to therapeutic inhibition. CONCLUSIONS We uncovered genetic subtypes of DLBCL with distinct genotypic, epigenetic, and clinical characteristics, providing a potential nosology for precision-medicine strategies in DLBCL. (Funded by the Intramural Research Program of the National Institutes of Health and others.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.