This article illustrates the complex anatomy of the nervous system within the chest and details important epidemiologic and pathophysiologic features as an approach to neurogenic tumors of the thorax. Key imaging features of neurogenic tumors occurring in the chest are identified, focusing on distinguishing characteristics and the relative advantages of available imaging modalities to further refine a differential diagnosis.
On surveillance imaging of patients with cancer or when metastatic disease is suspected, detection of metastatic disease may be greatly enhanced by an understanding of which primary tumors metastasize to the heart and the most common routes of spread.
Context.— Detection of high-risk human papillomavirus (HR-HPV) in squamous cell carcinoma is important for classification and prognostication. In situ hybridization (ISH) is a commonly used HR-HPV–specific test that targets viral RNA or DNA. The College of American Pathologists (CAP) provides proficiency testing for laboratories performing HR-HPV ISH. Objective.— To compare the analytical performance of RNA- and DNA-based ISH methods on CAP HR-HPV proficiency tests. Design.— Data from the 2016–2018 CAP HPV ISH proficiency testing surveys were reviewed. These surveys consist of well-characterized samples with known status for HR-HPV, including 1 to 2 copies, 50 to 100 copies, 300 to 500 copies, and no copies of HR-HPV per cell. Results.— Ninety-five participants submitted 1268 survey results from 20 cores. Overall, RNA ISH had a significantly higher percentage of correct responses than DNA ISH: 97.4% (450 of 462) versus 80.6% (650 of 806) ( P < .001). This disparity appears to be the consequence of a superior sensitivity of RNA ISH compared to DNA ISH for samples with 1 to 2 and with 50 to 100 copies of HR-HPV per cell: 95.2% (120 of 126) versus 53.8% (129 of 240), P < .001, respectively, and 100% (89 of 89) versus 76.3% (119 of 156), P < .001, respectively. Conclusions.— An assessment of CAP HR-HPV proficiency test performance indicates that RNA ISH shows significantly higher accuracy than DNA ISH owing to higher analytical sensitivity of RNA ISH in tumors with low (1–2 copies per cell) to intermediate (50–100 copies per cell) HR-HPV viral copy numbers. These data support the use of RNA over DNA ISH in clinical laboratories that perform HR-HPV testing as part of their testing algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.