Awkward upper extremity postures and repetitive wrist motions have been identified by some studies as risk factors for upper extremity musculoskeletal disorders during keyboard work. However, accurate body postures and joint motions of typists typing on standardized workstations are not known. A laboratory study was conducted to continuously measure wrist and forearm postures and motions of 25 subjects while they typed for 10-15 min at a standard computer workstation adjusted to the subjects' anthropometry. Electrogoniometers continuously recorded wrist and forearm angles. Joint angular velocities and accelerations were calculated from the postural data. The results indicate that wrist and forearm postures during typing were sustained at non-neutral angles; mean wrist extension angle was 23.4 +/- 10.9 degrees on the left and 19.9 +/- 8.6 degrees on the right. Mean ulnar deviation was 14.7 +/- 10.1 degrees on the left and 18.6 +/- 5.8 degrees on the right. More than 73% of subjects typed with the left or right wrist in greater than 15 degrees extension and more than 20% typed with the left or right wrist in greater than 20 degrees ulnar deviation. Joint angles and motions while typing on an adjusted computer workstation were not predictable based on anthropometry or typing speed and varied widely between subjects. Wrist motions are rapid and are similar in magnitude to wrist motions of industrial workers performing jobs having a high risk for developing cumulative trauma disorders. The magnitude of the dynamic components suggests that wrist joint motions may need to be evaluated as a risk factor for musculoskeletal disorders during typing.
The design of the force-displacement characteristics or 'feel' of keyboard keyswitches has been guided by preference and performance data; there has been very little information on how switch 'feel' alters muscle activity or applied force. This is a laboratory-based repeated measures design experiment to evaluate the effect of computer keyboard keyswitch design on applied finger force and muscle activity during a typing task. Ten experienced typists typed on three keyboards which differed in keyswitch make force (0.34, 0.47 and 1.02 N) while applied fingertip force and finger flexor electromyograms were recorded. The keyboard testing order was randomized and subjects typed on each keyboard for three trials, while data was collected for a minimum of 80 keystrokes per trial. No differences in applied fingertip force or finger flexor EMG were observed during typing on keyboards with switch make force of 0.34 or 0.47 N. However, applied fingertip force increased by approximately 40% (p < 0.05) and EMG activity increased by approximately 20% (p < 0.05) when the keyswitch make force was increased from 0.47 to 1.02 N. These results suggest that, in order to minimize the biomechanical loads to forearm tendons and muscles of keyboard users, keyswitches with a make force of 0.47 N or less should be considered over switches with a make force of 1.02 N.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.