Ca2+ sequestration and release from disks of rod outer segments may play a critical role in visual transduction. An ATP-dependent Ca2+ uptake activity has been identified in association with purified disks of bovine rod outer segments. A crude preparation of osmotically active disks was obtained from rod outer segments by hypoosmotic shock and subsequent flotation on a 5% Ficoll 400 solution. These "crude" disks were further purified by separation into two distinct components by centrifugation in a linear Ficoll gradient. Disks comprised the major component; at least 60% of the protein was rhodopsin. This fraction also contained a Ca2+ uptake activity stimulated approximately 4-fold by ATP. The initial rate was approximately 0.21 nmol of Ca2+ (mg of protein)-1 min-1. Most of the ATP-dependent accumulation of 45Ca2+ was released by the calcium ionophore A23187. The uptake activity was sensitive to vanadate (Ki approximately 20 microM) and insensitive to the mitochondrial Ca2+ uptake inhibitor ruthenium red (10 microM). The ATP-dependent Ca2+ uptake exhibited Michaelis-Menten activation kinetics with respect to [Ca2+] (Km approximately 6 microM). The osmotic properties of the sealed disk membranes were exploited to determine whether the association of Ca2+ transport activity with the disks was merely coincidental. The sedimentation properties of these disks, upon centrifugation on a second Ficoll linear density gradient, varied with the osmolarity of the gradient solution. In several separate gradient solutions of differing osmotic and ionic strengths, the Ca2+ uptake activity always comigrated with the disks. These results indicate that the ATP-dependent Ca2+ uptake activity was physically associated with sealed native disk membranes. The characteristics of the Ca2+ uptake activity suggest that it may play a major role in the regulation of cytosolic Ca2+ levels in rod cells in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.