Increased susceptibility to autoimmunity in females is often viewed as the consequence of enhanced immunoreactivity providing superior protection against infections. We paradoxically observed greater mortality in female compared to male mice during systemic viral infections with three large double-stranded DNA viruses (herpes simplex virus type I [HSV], murine cytomegalovirus [MCMV], and vaccinia virus [VV]). Indeed, female mice were 27-fold more susceptible to infection with HSV than male mice. Elimination of estrogen by ovariectomy in female mice or addition of estrogen to castrated male mice only partially eliminated the observed sex differences following HSV infection. However, the differences observed in survival between female and male mice were nearly abrogated in the absence of type I interferon receptor signaling and substantially mitigated in absence of DAP12 signaling. Interestingly, the sex-specific impact of type I interferon receptor and DAP12 signaling differentially influenced survival during systemic viral infections with type I interferon receptor signaling enhancing male survival and DAP12 signaling increasing the susceptibility of female mice. These results have potential implications for the sex disparities observed in human autoimmune disorders.
NK cells vigorously proliferate during viral infections, resulting in an expanded pool of innate lymphocytes that are able to participate in early host defense. The relative contributions of cytokines and activation receptors in stimulating NK cell proliferation during viral infections are not well characterized. In this study, we demonstrated that signaling through the NK cell activation receptor Ly49H was able to compensate for the absence of cytokine stimulation in the preferential phase of viral-induced proliferation during murine cytomegalovirus infection. In the absence of type I IFN stimulation, NK cell proliferation was strongly biased toward cells expressing the Ly49H receptor, even at early time points when minimal preferential Ly49H-mediated proliferation was observed in wild-type mice. In the absence of effective Ly49H signaling or following infection with virus that did not express the ligand for Ly49H, no difference was observed in the proliferation of subsets of NK cells that either express or lack expression of Ly49H, although the overall proliferation of NK cells in IFNαβR−/− mice was substantially reduced. These results highlight the contribution of NK cell activation receptors in stimulating proliferation and subsequent expansion of NK cells that are able to recognize virally infected cells.
Natural killer (NK) cells play a critical role in the host defense against herpesviruses. Although herpesviruses are ubiquitous in human populations, only a minority of people experience severe recurrent infections. We hypothesize that uncharacterized NK cell functional deficits predispose individuals to more significant or frequent herpesvirus infections and reactivations. To investigate this hypothesis, we broadly analyzed NK cell phenotype and functional responses in a cohort of predominantly pediatric patients with recurrent and/or severe herpesvirus infections and compared them to a healthy control population. Our results identified no global differences in cytolysis, degranulation, interferon-γ production, or surface receptor upregulation following cytokine stimulation. However, abnormal NK cell functional responses were observed in nearly one-third of patients (including 3 with hyporesponsiveness to activating signals and 1 with markedly decreased CD11b expression associated with reduced cytotoxicity and degranulation), which might contribute to those individuals' susceptibility to herpesvirus infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.