Bracket design, type of experimental test, and amount of wire deflection significantly affected the amount of forces released by superelastic NiTi wires (P<.05). This phenomenon offers clinicians the possibility to manipulate the wire's load during alignment.
The aim of this study was to investigate the mechanical properties of superelastic and thermal nickel-titanium (NiTi) archwires for correct selection of orthodontic wires. Seven different NiTi wires of two different sizes (0.014 and 0.016 inches), commonly used during the alignment phase, were tested. A three-point bending test was carried out to evaluate the load-deflection characteristics. The archwires were subjected to bending at a constant temperature of 37°C and deflections of 2 and 4 mm. Analysis of variance showed that thermal NiTi wires exerted significantly lower working forces than superelastic wires of the same size in all experimental tests (P < 0.05). Wire size had a significant effect on the forces produced: with an increase in archwire dimension, the released strength increased for both thermal and superelastic wires. Superelastic wires showed, at a deflection of 2 mm, narrow and steep hysteresis curves in comparison with the corresponding thermal wires, which presented a wide interval between loading and unloading forces. During unloading at 4 mm of deflection, all wires showed curves with a wider plateau when compared with 2 mm deflection. Such a difference for the superelastic wires was caused by the martensite stress induced at higher deformation levels. A comprehensive understanding of mechanical characteristics of orthodontic wires is essential and selection should be undertaken in accordance with the behaviour of the different wires. It is also necessary to take into account the biomechanics used. In low-friction mechanics, thermal NiTi wires are to be preferred to superelastic wires, during the alignment phase due to their lower working forces. In conventional straightwire mechanics, a low force archwire would be unable to overcome the resistance to sliding.
BackgroundThe aim of this study was to evaluate the amount of radiation doses absorbed by soft tissues (entrance skin dose) with a low-dose spiral computed tomography (CT) protocol compared to conventional X-ray techniques commonly used in orthodontics.MethodsThe amount of skin dose has been evaluated using a tissue-equivalent head-neck radiotherapy humanoid phantom with thermoluminescent dosimeters placed at the level of eye lens, parotid glands, and thyroid glands. CT images have been taken using a Sensation 16 Siemens CT scan and a low-dose protocol (15 mAs, 1 pitch, 2.5 mGy (CTDIvol), 80 kV, 1-mm slice thickness).ResultsThe difference in image quality between traditional X-ray techniques and low-dose spiral CT was statistically significant (P < 0.05). The difference in mean absorbed dose instead was not statistically significant.ConclusionsOur protocol allows a more accurate orthodontic diagnosis without an increase of radiological risk for the patients in comparison to traditional X-ray techniques.
Background The aim of this study is to evaluate through computed tomography differences in cortical plate thickness of condyle in patients with different facial vertical skeletal pattern.Methods The final sample of this retrospective study included CBCT exams of 60 adult subjects (mean age 33.2 ± 5.6), selected from the digital archive of a private practice. The subjects were assigned to 3 different groups according to the values of the Frankfurt-mandibular plane angle: hyper- normo- and hypodivergent group. The volume rendering of the mandible was obtained and three condylar points were marked on it: median pole, lateral pole and the most cranial point. For each considered reference point the minimum distance between external and internal cortical surface was measured, obtaining three different outcomes: median pole, lateral pole and cranial point cortical bone thickness. The measurement was executed by means of Mimics software by the same expert operator in specific scan views.Results The cortical bone thickness of hyperdivergent patients was found to be statistically thicker than normodivergent patients and hypodivergent patients. Cortical bone thickness of normodivergent patients was found thicker than hypodivergent patients. All the differences were statistically significant (p<0.05). The Person correlation coefficient showed a statistically significant correlation (p<.001) between the Frankfurt-mandibular plane angle and the evaluated cortical bone thickness outcomes.Conclusion Facial biotype characteristics that define vertical facial skeletal pattern affect the cortical bone thickness of mandibular condyle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.