Most globular protein chains, when transferred from high to low denaturant concentrations, collapse instantly before they refold to their native state. The initial compaction of the protein molecule is assumed to have a key effect on the folding pathway, but it is not known whether the earliest structures formed during or instantly after collapse are defined by local or by non-local interactions--that is, by secondary structural elements or by loop closure of long segments of the protein chain. Stable closure of one or several long loops can reduce the chain entropy at a very early stage and can prevent the protein from following non-productive pathways whose number grows exponentially with the length of the protein chain. In Escherichia coli adenylate kinase (AK), about seven long loops define the topology of the native structure. We selected four loop-forming sections of the chain and probed the time course of loop formation during refolding of AK. We labeled the termini of the loop segments with tryptophan and cysteine-5-amidosalicylic acid. This donor-acceptor pair of probes used with fluorescence resonance excitation energy transfer spectroscopy (FRET) is suitable for detecting very short distances and thus is able to distinguish between random and specific compactions. Refolding of AK was initiated by stopped-flow mixing, followed simultaneously by donor and acceptor fluorescence, and analyzed in terms of energy transfer efficiency and distance. In the collapsed state of AK, observed after the 5-ms dead time of the instrument, one of the selected segments shows a native-like separation of its termini; it forms a loop already in the collapsed state. A second segment that includes the first but is longer by 15 residues shows an almost native-like separation of its termini. In contrast, a segment that is shorter but part of the second segment shows a distance separation of its termini as high as a segment that spans almost the whole protein chain. We conclude that a specific network of non-local interactions, the closure of one or several loops, can play an important role in determining the protein folding pathway at its early phases.
The information obtained by studying fluorescence decay of labeled biopolymers is a major resource for understanding the dynamics of their conformations and interactions. The lifetime of the excited states of probes attached to macromolecules is in the nanosecond time regime, and hence, a series of snapshot decay curves of such probes might - in principle - yield details of fast changes of ensembles of labeled molecules down to sub-microsecond time resolution. Hence, a major current challenge is the development of instruments for the low noise detection of fluorescence decay curves within the shortest possible time intervals. Here, we report the development of an instrument, picosecond double kinetics apparatus, that enables recording of multiple fluorescence decay curves with picosecond excitation pulses over wide spectral range during microsecond data collection for each curve. The design is based on recording and averaging multiphoton pulses of fluorescence decay using a fast 13 GHz oscilloscope during microsecond time intervals at selected time points over the course of a chemical reaction or conformational transition. We tested this instrument in a double kinetics experiment using reference probes (N-acetyl-tryptophanamide). Very low stochastic noise level was attained, and reliable multi-parameter analysis such as derivation of distance distributions from time resolved FRET (fluorescence resonance excitation energy transfer) measurements was achieved. The advantage of the pulse recording and averaging approach used here relative to double kinetics methods based on the established time correlated single photon counting method, is that in the pulse recording approach, averaging of substantially fewer kinetic experiments is sufficient for obtaining the data. This results in a major reduction in the consumption of labeled samples, which in many cases, enables the performance of important experiments that were not previously feasible.
Detailed studies of the mechanisms of macromolecular conformational transitions such as protein folding are enhanced by analysis of changes of distributions for intramolecular distances during the transitions. Time-resolved Förster resonance energy transfer (FRET) measurements yield such data, but the more readily available kinetics of mean FRET efficiency changes cannot be analyzed in terms of changes in distances because of the sixth-power dependence on the mean distance. To enhance the information obtained from mean FRET efficiency kinetics, we combined the analyses of FRET efficiency kinetics and equilibrium trFRET experiments. The joint analysis enabled determination of transient distance distributions along the folding reaction both in cases where a two-state transition is valid and in some cases consisting of a three-state scenario. The procedure and its limits were tested by simulations. Experimental data obtained from stopped-flow measurements of the refolding of Escherichia coli adenylate kinase were analyzed. The distance distributions between three double-labeled mutants, in the collapsed transient state, were determined and compared to those obtained experimentally using the double-kinetics technique. The proposed method effectively provides information on distance distributions of kinetically accessed intermediates of fast conformational transitions induced by common relaxation methods.
The nature of the earliest steps of the initiation of the folding pathway of globular proteins is still controversial. To elucidate the role of early closure of long loop structures in the folding transition, we studied the folding kinetics of subdomain structures in Escherichia coli adenylate kinase (AK) using Förster type resonance excitation energy transfer (FRET)-based methods. The overall folding rate of the AK molecule and of several segments that form native β strands is 0.5 ± 0.3 s(-1), in sharp contrast to the 1000-fold faster closure of three long loop structures in the CORE domain. A FRET-based "double kinetics" analysis revealed complex transient changes in the initially closed N-terminal loop structure that then opens and closes again at the end of the folding pathway. The study of subdomain folding in situ suggests a hierarchic ordered folding mechanism, in which early and rapid cross-linking by hydrophobic loop closure provides structural stabilization at the initiation of the folding pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.