The spleen is rarely involved in SBL at the time of staging, according to PET-CT, except in cases with direct extension from adjacent peritoneal mass. The low rate of spleen involvement according to PET-CT may serve as a specific characteristic of SBL. Larger-scale clinical studies incorporating PET-CT scans in SBL are needed to confirm our observation.
Background Beta blockers prolong life in patients with cardiovascular diseases. Negative chronotropic and inotropic effects carry the potential to adversely effect peripheral skeletal and airway smooth muscle contributing to further fatigue, dyspnea and exercise intolerance. Research questions Do beta-blockers reduce maximal power output (MPO), VO2 max, cardiorespiratory responses, increase the perceived effort required to cycle and breath during cardiopulmonary exercise tests (CPET) and limit the capacity to exercise? Methods Retrospective observational study of subjects performing CPET to capacity from 1988 to 2012. Subjects with and without beta-blockers were compared: baseline physiological characteristics, MPO, VO 2 max, heart rate max, ventilation responses and perceived exertion required to cycle and breathe (modified Borg scale). Forward stepwise linear additive regression was performed with MPO as the dependent factor with height, age, gender, muscle strength, FEV1 and DLCO as independent contributors. Results 42,771 subjects were included 7,787 were receiving beta-blocker [mean age 61 yrs, BMI 28.40 kg/m 2 , 9% airflow obstruction (FEV1/FVC<0.7)] and 34,984 were not [mean age 51yrs, BMI 27.40 kg/m 2 , 11% airflow obstruction]. Heart rate was lower by 18.2% (95% C.I. 18.15–18.38) (p<0.0001) while Oxygen pulse (VO 2 /HR) was higher by 19.5% (95% C.I. 19.3–19.7) in those receiving beta blockers. Maximum power output (MPO) was 3.3% lower in those taking beta-blockers. The perceived effort required to cycle and breathe (mBorg) was 8% lower in those taking beta-blockers. Interpretation Increases in oxygen pulse minimize the reduction in exercise intolerance and symptom handicap associated with beta-blockers.
Background: Hypomagnesemia is a known predisposing condition for the appearance of digitalis toxicity. The detection of a genetic form of Mg urinary wasting with hypomagnesemia being caused by a mutation in the γ subunit (FXYD2) of the Na,K-ATPase, the pharmacological target of Digoxin, prompted us to investigate whether Digoxin administration increases urinary Mg excretion. Methods: Two groups of subjects, with rapid atrial fibrillation, received intravenous Digoxin (n = 9) or verapamil (n = 8), for heart rate control. During the following 4 h, blood and urinary creatinine, sodium, potassium, calcium, and magnesium levels were determined, and fractional excretion (Fex) values for Na, K, Ca, and Mg were calculated. Results: In the Digoxin group, at 60 min Fex Mg rose from 3.07 ± 1.21 to 7.58 ± 2.51% (an increase of 269 ± 107% of baseline, p < 0.001), and at 240 min to 6.05 ± 2.30% (204 ± 56% of baseline, p < 0.01). No significant change was observed for Fex Na, Fex K, and Fex Ca. A striking correlation was found between individual values of Fex Mg and serum Digoxin concentration (r = 0.678, p < 0.0001). No significant correlation was found between Fex Na or Fex K and serum Digoxin. A correlation of borderline significance was found between Fex Ca and serum Digoxin (r = 0.349, p = 0.073). Conclusions: The hypermagnesuric effect of acute Digoxin treatment is reminiscent of the effect of the missense mutation in FXYD2, which assumes that FXYD2 is a positive regulator of Na,K-ATPase in the distal convoluted tubule (DCT). The borderline calciuric effect of Digoxin may point to an additional site of action, more proximal to the DCT, that is, the thick ascending limb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.