Dimerization of the pore-forming transmembrane domains of TAP1 (TM1-6) with its TAP2 counterpart (TM1-5) prevents the post-translational translocation of TM6 of TAP1 and results in a complex with reduced mobility within the endoplasmic reticulum membrane compared with the free subunit. These techniques are used to show that the pore-forming domains of TAP are aligned in a head-head/tail-tail orientation. This positions the following peptide-binding segments of the two TAP subunits to one side of the pore.
Association of the mouse major histocompatibility complex (MHC) class I heavy chain H2-Kb with mouse beta 2-microglobulin (beta 2m) was studied in an in vitro translation system. Formation of stable class I complexes was found to be dependent on the presence of presentable peptides and oxidized glutathione, which promotes the formation of disulfide bridges. Translocation of peptides into microsomes was demonstrated by showing that a radioiodinated peptide containing an N-glycosylation acceptor site became glycosylated. Class I complex formation was observed only when heavy chains and beta 2m were translated simultaneously, and thus occurs in the microsomes and not after their solubilization. However, peptide binding takes place only after solubilization of the microsomes. The class I complexes translated in vitro show the same specificity and length preference for peptides as their counterparts in RMA-S cells. Assembly of in vitro translated class I complexes was found to occur also in the absence of peptides, resulting in the formation of unstable molecules that are stabilized by incubation with peptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.