The world's oceans contain a complex mixture of micro-organisms that are for the most part, uncharacterized both genetically and biochemically. We report here a metagenomic study of the marine planktonic microbiota in which surface (mostly marine) water samples were analyzed as part of the Sorcerer II Global Ocean Sampling expedition. These samples, collected across a several-thousand km transect from the North Atlantic through the Panama Canal and ending in the South Pacific yielded an extensive dataset consisting of 7.7 million sequencing reads (6.3 billion bp). Though a few major microbial clades dominate the planktonic marine niche, the dataset contains great diversity with 85% of the assembled sequence and 57% of the unassembled data being unique at a 98% sequence identity cutoff. Using the metadata associated with each sample and sequencing library, we developed new comparative genomic and assembly methods. One comparative genomic method, termed “fragment recruitment,” addressed questions of genome structure, evolution, and taxonomic or phylogenetic diversity, as well as the biochemical diversity of genes and gene families. A second method, termed “extreme assembly,” made possible the assembly and reconstruction of large segments of abundant but clearly nonclonal organisms. Within all abundant populations analyzed, we found extensive intra-ribotype diversity in several forms: (1) extensive sequence variation within orthologous regions throughout a given genome; despite coverage of individual ribotypes approaching 500-fold, most individual sequencing reads are unique; (2) numerous changes in gene content some with direct adaptive implications; and (3) hypervariable genomic islands that are too variable to assemble. The intra-ribotype diversity is organized into genetically isolated populations that have overlapping but independent distributions, implying distinct environmental preference. We present novel methods for measuring the genomic similarity between metagenomic samples and show how they may be grouped into several community types. Specific functional adaptations can be identified both within individual ribotypes and across the entire community, including proteorhodopsin spectral tuning and the presence or absence of the phosphate-binding gene PstS.
The assembly of DNA barcode libraries is particularly relevant within species-rich natural communities for which accurate species identifications will enable detailed ecological forensic studies. In addition, well-resolved molecular phylogenies derived from these DNA barcode sequences have the potential to improve investigations of the mechanisms underlying community assembly and functional trait evolution. To date, no studies have effectively applied DNA barcodes sensu strictu in this manner. In this report, we demonstrate that a three-locus DNA barcode when applied to 296 species of woody trees, shrubs, and palms found within the 50-ha Forest Dynamics Plot on Barro Colorado Island (BCI), Panama, resulted in >98% correct identifications. These DNA barcode sequences are also used to reconstruct a robust community phylogeny employing a supermatrix method for 281 of the 296 plant species in the plot. The three-locus barcode data were sufficient to reliably reconstruct evolutionary relationships among the plant taxa in the plot that are congruent with the broadly accepted phylogeny of flowering plants (APG II). Earlier work on the phylogenetic structure of the BCI forest dynamics plot employing less resolved phylogenies reveals significant differences in evolutionary and ecological inferences compared with our data and suggests that unresolved community phylogenies may have increased type I and type II errors. These results illustrate how highly resolved phylogenies based on DNA barcode sequence data will enhance research focused on the interface between community ecology and evolution.T he most difficult challenge for DNA barcoding in plants is discriminating among taxa of highly speciose genera where rates of species identification by using a variety of putative barcodes rarely exceed 70% (1). In some cases of complex recently evolved species groups DNA barcoding may simply be inappropriate as an identification tool (2). This difficulty is especially acute in cases where certain life history traits have affected the rates of molecular evolution in a lineage, which in turn may affect rates of species assignment by DNA barcodes [e.g., generation times (3) and age-of-crown group diversification (4)].In the absence of a universal barcode region capable of discriminating among all species in all groups of plants, it is clear that DNA barcodes will be most effectively applied in the identification of a circumscribed set of species that occur together in a floristic region or ecological community, rather than in distinguishing among an exhaustive sample of taxonomically closely related species. In these cases only a limited number of closely related species occur in the same region, so identification to genus is all that is required.It is now generally agreed that a plant barcode will combine more than one locus (5-7) and will include a phylogenetically conservative coding locus (rbcL) with one or more rapidly evolving regions (part of the matK gene and the intergenic spacer trnH-psbA). Although more laborious than a si...
It is widely believed that gene flow connected many shallow water populations of the Caribbean and eastern Pacific until the Panama seaway closed 3.0 to 3.5 million years ago. Measurements of biochemical and reproductive divergence for seven closely related, transisthmian pairs of snapping shrimps ( Alpheus ) indicate, however, that isolation was staggered rather than simultaneous. The four least divergent pairs provide the best estimate for rates of molecular divergence and speciation. Ecological, genetic, and geological data suggest that gene flow was disrupted for the remaining three pairs by environmental change several million years before the land barrier was complete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.