Objectives
Comparative assessments of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) molecular assays that have been operationalized through the US Food and Drug Administration’s Emergency Use Authorization process are warranted to assess real-world performance. Characteristics such as sensitivity, specificity, and false-negative rate are important to inform clinical use.
Methods
We compared five SARS-CoV-2 assays using nasopharyngeal and nasal swab specimens submitted in transport media; we enriched this cohort for positive specimens, since we were particularly interested in the sensitivity and false-negative rate. Performance of each test was compared with a composite standard.
Results
The sensitivities and false-negative rates of the 239 specimens that met inclusion criteria were, respectively, as follows: Centers for Disease Control and Prevention 2019 nCoV Real-Time RT-PCR Diagnostic Panel, 100% and 0%; TIB MOLBIOL/Roche z 480 Assay, 96.5% and 3.5%; Xpert Xpress SARS-CoV-2 (Cepheid), 97.6% and 2.4%; Simplexa COVID-19 Direct Kit (DiaSorin), 88.1% and 11.9%; and ID Now COVID-19 (Abbott), 83.3% and 16.7%.
Conclusions
The assays that included a nucleic acid extraction followed by reverse transcription polymerase chain reaction were more sensitive than assays that lacked a full extraction. Most false negatives were seen in patients with low viral loads, as extrapolated from crossing threshold values.
Elucidating the structures of membrane proteins is essential to our understanding of disease states and a critical component in the rational design of drugs. Structural characterization of a membrane protein begins with its detergent solubilization from the lipid bilayer and its purification within a functionally stable protein-detergent complex (PDC). Crystallization of the PDC typically occurs by changing the solution environment to decrease solubility and promote interactions between exposed hydrophilic surface residues. As membrane proteins have been observed to form crystals close to the phase separation boundaries of the detergent used to form the PDC, knowledge of these boundaries under different chemical conditions provides a foundation to rationally design crystallization screens. We have carried out dye-based detergent phase partitioning studies using different combinations of 10 polyethylene glycols (PEG), 11 salts, and 11 detergents to generate a significant amount of chemically diverse phase boundary data. The resulting curves were used to guide the formulation of a 1536-cocktail crystallization screen for membrane proteins. We are making both the experimentally derived phase boundary data and the 1536 membrane screen available through the high-throughput crystallization facility located at the Hauptman-Woodward Institute. The phase boundary data have been packaged into an interactive Excel spreadsheet that allows investigators to formulate grid screens near a given phase boundary for a particular detergent. The 1536 membrane screen has been applied to 12 membrane proteins of unknown structures supplied by the structural genomics and structural biology communities, with crystallization leads for 10/12 samples and verification of one crystal using X-ray diffraction.
ABSTRACT:In 2014, University of California-Davis University Library and the California Digital Library collaborated on an Andrew W. Mellon Foundation grant-funded project to explore costs associated with moving scholarly journal subscriptions in the U.S. market to an entirely Article Processing Charge (APCs) business model, known also as "Gold Open Access." We contacted MacKenzie Smith, one of the principal investigators, in order to get her reflections on the process of gathering the data, and to discuss some implications of the findings. The interview suggests that the "Pay It Forward" model could be successful over time, following a necessarily complex transition period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.