Four human coronaviruses (HCoV-229E, HCoV-HKU1, HCoV-NL63, and HCoV-OC43) are associated with a range of respiratory outcomes, including bronchiolitis and pneumonia. Their epidemiologies and clinical characteristics are poorly described and are often reliant on case reports. To address these problems, we conducted a large-scale comprehensive screening for all four coronaviruses by analysis of 11,661 diagnostic respiratory samples collected in Edinburgh, United Kingdom, over 3 years between July 2006 and June 2009 using a novel four-way multiplex real-time reverse transcription-PCR (RT-PCR) assay. Coronaviruses were detected in 0.3 to 0.85% of samples in all age groups. Generally, coronaviruses displayed marked winter seasonality between the months of December and April and were not detected in summer months, which is comparable to the pattern seen with influenza viruses. HCoV-229E was the exception; detection was confined to the winter of 2008 and was sporadic in the following year. There were additional longer-term differences in detection frequencies between seasons, with HCoV-OC43 predominant in the first and third seasons and HCoV-HKU1 dominating in the second (see Results for definitions of seasons). A total of 11 to 41% of coronaviruses detected were in samples testing positive for other respiratory viruses, although clinical presentations of coronavirus monoinfections were comparable to those of viruses which have an established role in respiratory disease, such as respiratory syncytial virus, influenza virus, and parainfluenza viruses. The novel multiplex assay for real-time pan-coronavirus detection enhances respiratory virus diagnosis, overcomes potential diagnostic problems arising through seasonal variation in coronavirus frequency, and provides novel insights into the epidemiology and clinical implications of coronaviruses.Four human coronaviruses (human coronavirus 229E [HCoV-229E], HCoV-HKU1, HCoV-NL63, and HCoV-OC43) are associated with a range of respiratory symptoms, including highmorbidity outcomes such as pneumonia and bronchiolitis (26,31,35). Specifically, HCoV-NL63 has been associated with croup (33) and HCoV-HKU1 with febrile convulsion (18). Coronaviruses are frequently codetected with other respiratory viruses, particularly with human respiratory syncytial virus (HRSV) (17). Whether coronaviruses contribute to disease severity in such coinfections is currently unclear. Other coronaviruses infecting humans include human enteric coronavirus, which is closely related to HCoV-OC43 and is associated with necrotizing enterocolitis and gastroenteritis (10,27).Coronaviruses are globally distributed (7,32,34,38), although there are differences in the frequency of detection of the four viruses in different parts of the world at different times (6,11,15,16,22,28,29). Longitudinal studies of coronavirus epidemiology are lacking in the literature and are restricted to descriptions representing a maximum of 1 year for all four respiratory coronaviruses or 2 years for three coronaviruses (9,17,18). Th...
HCoV-NL63 and HCoV-OC43 infections occur frequently in early childhood, more often than HCoV-HKU1 or HCoV-229E infections. HCoV-OC43 and HCoV-NL63 may elicit immunity that protects from subsequent HCoV-HKU1 and HCoV-229E infection, respectively, which would explain why HCoV-OC43 and HCoV-NL63 are the most frequently infecting HCoVs. There are no indications that infection by one of the HCoVs is more pathogenic than others.
A systematic literature survey suggests that there are 1399 species of human pathogen. Of these, 87 were first reported in humans in the years since 1980. The new species are disproportionately viruses, have a global distribution, and are mostly associated with animal reservoirs. Their emergence is often driven by ecological changes, especially with how human populations interact with animal reservoirs. Here, we review the process of pathogen emergence over both ecological and evolutionary time scales by reference to the "pathogen pyramid." We also consider the public health implications of the continuing emergence of new pathogens, focusing on the importance of international surveillance.
Rhinovirus infections are the most common cause of viral illness in humans, and there is increasing evidence of their etiological role in severe acute respiratory tract infections (ARTIs). Human rhinoviruses (HRVs) are classified into two species, species A and B, which contain over 100 serotypes, and a recently discovered genetically heterogeneous third species (HRV species C). To investigate their diversity and population turnover, screening for the detection and the genetic characterization of HRV variants in diagnostic respiratory samples was performed by using nested primers for the efficient amplification of the VP4-VP2 region of HRV (and enterovirus) species and serotype identification. HRV species A, B, and C variants were detected in 14%, 1.8%, and 6.8%, respectively, of 456 diagnostic respiratory samples from 345 subjects (6 samples also contained enteroviruses), predominantly among children under age 10 years. HRV species A and B variants were remarkably heterogeneous, with 22 and 6 different serotypes, respectively, detected among 73 positive samples. Similarly, by using a pairwise distance threshold of 0.1, species C variants occurring worldwide were provisionally assigned to 47 different types, of which 15 were present among samples from Edinburgh, United Kingdom. There was a rapid turnover of variants, with only 5 of 43 serotypes detected during both sampling periods. By using divergence thresholds and phylogenetic analysis, several species A and C variants could provisionally be assigned to new types. An initial investigation of the clinical differences between rhinovirus species found HRV species C to be nearly twice as frequently associated with ARTIs than other rhinovirus species, which matches the frequencies of detection of respiratory syncytial virus. The study demonstrates the extraordinary genetic diversity of HRVs, their rapid population turnover, and their extensive involvement in childhood respiratory disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.