Head-to-tail peptide macrocyclisations are significantly improved, as measured by isolated yields, reaction rates and product distribution, by substitution of one of the backbone amide CO bonds with an oxetane ring.
Antibiotic resistance is a significant threat to human health, with natural products remaining the best source for new antimicrobial compounds. Antimicrobial peptides (AMPs) are natural products with great potential for clinical use as they are small, amenable to customization, and show broad-spectrum activities. Lynronne-1 is a promising AMP identified in the rumen microbiome that shows broad-spectrum activity against pathogens such as methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii. Here we investigated the structure of Lynronne-1 using solution NMR spectroscopy and identified a 13-residue amphipathic helix containing all six cationic residues. We used biophysical approaches to observe folding, membrane partitioning and membrane lysis selective to the presence of anionic lipids. We translated our understanding of Lynronne-1 structure to design peptides which varied in the size of their hydrophobic helical face. These peptides displayed the predicted continuum of membrane-lysis activities in vitro and in vivo, and yielded a new AMP with 4-fold improved activity against A. baumannii and 32-fold improved activity against S. aureus.
IntroductionImproving treatments for Diffuse Large B-Cell Lymphoma (DLBCL) is challenged by the vast heterogeneity of the disease. Nuclear factor-κB (NF-κB) is frequently aberrantly activated in DLBCL. Transcriptionally active NF-κB is a dimer containing either RelA, RelB or cRel, but the variability in the composition of NF-κB between and within DLBCL cell populations is not known.ResultsHere we describe a new flow cytometry-based analysis technique termed “NF-κB fingerprinting” and demonstrate its applicability to DLBCL cell lines, DLBCL core-needle biopsy samples, and healthy donor blood samples. We find each of these cell populations has a unique NF-κB fingerprint and that widely used cell-of-origin classifications are inadequate to capture NF-κB heterogeneity in DLBCL. Computational modeling predicts that RelA is a key determinant of response to microenvironmental stimuli, and we experimentally identify substantial variability in RelA between and within ABC-DLBCL cell lines. We find that when we incorporate NF-κB fingerprints and mutational information into computational models we can predict how heterogeneous DLBCL cell populations respond to microenvironmental stimuli, and we validate these predictions experimentally.DiscussionOur results show that the composition of NF-κB is highly heterogeneous in DLBCL and predictive of how DLBCL cells will respond to microenvironmental stimuli. We find that commonly occurring mutations in the NF-κB signaling pathway reduce DLBCL’s response to microenvironmental stimuli. NF-κB fingerprinting is a widely applicable analysis technique to quantify NF-κB heterogeneity in B cell malignancies that reveals functionally significant differences in NF-κB composition within and between cell populations.
Peptide-based drugs combine advantages of larger biological therapeutics with those of small molecule drugs, but they generally display poor permeability and metabolic stability. Recently, we introduced a new type of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.