The canine nasal airway is an impressively complex anatomical structure, having many functional roles. The complicated branching and intricate scrollwork of the nasal conchae provide large surface area for heat, moisture, and odorant transfer. Of the previous anatomical studies of the canine nasal airway, none have included a detailed rendering of the maxilloturbinate and ethmoidal regions of the nose. Here, we present a high-resolution view of the nasal airway of a large dog, using magnetic resonance imaging scans. Representative airway sections are shown, and a three-dimensional surface model of the airway is reconstructed from the image data. The resulting anatomic structure and detailed morphometric data of the airway provide insight into the functional nature of canine olfaction. A complex airway network is revealed, wherein the branched maxilloturbinate and ethmoturbinate scrolls appear structurally distinct. This is quantitatively confirmed by considering the fractal dimension of each airway, which shows that the maxilloturbinate airways are more highly contorted than the ethmoidal airways. Furthermore, surface areas of the maxilloturbinate and ethmoidal airways are shown to be much different, despite having analogous physiological functions. Functionally, the dorsal meatus of the canine nasal airway is shown to be a bypass for odorant-bearing inspired air around the complicated maxilloturbinate during sniffing for olfaction. Finally, nondimensional analysis is used to show that the airflow within both the maxilloturbinate and ethmoturbinate regions must be laminar. This work has direct relevance to biomimetic sniffer design, chemical trace detector development, intranasal drug delivery, and inhalation toxicology.
Zinc metal nanoparticles in picomolar concentrations strongly enhance odorant responses of olfactory sensory neurons. One- to 2-nm metallic particles contain 40-300 zinc metal atoms, which are not in an ionic state. We exposed rat olfactory epithelium to metal nanoparticles and measured odorant responses by electroolfactogram and whole-cell patch clamp. A small amount of zinc nanoparticles added to an odorant or an extracellular/intracellular particle perfusion strongly increases the odorant response in a dose-dependent manner. Zinc nanoparticles alone produce no odor effects. Copper, gold, or silver nanoparticles do not produce effects similar to those of zinc. If zinc nanoparticles are replaced by Zn(+2) ions in the same concentration range, we observed a reduction of the olfactory receptor neuron odorant response. Based on these observations, we hypothesize that zinc nanoparticles are closely located to the interface between the guanine nucleotide-binding protein and the receptor proteins and are involved in transferring signals in the initial events of olfaction. Our results suggest that zinc metal nanoparticles can be used to enhance and sustain the initial olfactory events.
Background Feline models of neurologic diseases, such as lysosomal storage diseases, leukodystrophies, Parkinson’s disease, stroke and NeuroAIDS, accurately recreate many aspects of human disease allowing for comparative study of neuropathology and the testing of novel therapeutics. Here we describe in vivo visualization of fine structures within the feline brain that were previously only visible post mortem. New Method 3 Tesla MR images were acquired using T1-weighted (T1w) 3D magnetization-prepared rapid gradient echo (MPRAGE) sequence (0.4mm isotropic resolution) and T2-weighted (T2w) turbo spin echo (TSE) images (0.3×0.3×1 mm3 resolution). Anatomic structures were identified based on feline and canine histology. Results T2w high resolution MR images with detailed structural identification are provided in transverse, sagittal and dorsal planes. T1w MR images are provided electronically in three dimensions for unrestricted spatial evaluation. Comparison with Existing Methods Many areas of the feline brain previously unresolvable on MRI are clearly visible in three orientations, including the dentate, interpositus and fastigial cerebellar nuclei, cranial nerves, lateral geniculate nucleus, optic radiation, cochlea, caudal colliculus, temporal lobe, precuneus, spinocerebellar tract, vestibular nuclei, reticular formation, pyramids and rostral and middle cerebral arteries. Additionally, the feline brain is represented in 3 dimensions for the first time. Conclusions These data establish normal appearance of detailed anatomical structures of the feline brain, which provide reference when evaluating neurologic disease or testing efficacy of novel therapeutics in animal models.
Cholinergic depletion in the medial septum (MS) is associated with impaired hippocampal-dependent learning and memory. Here we investigated whether long term potentiation (LTP) and synaptic currents, mediated by alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in the CA1 hippocampal region, are affected following cholinergic lesions of the MS. Stereotaxic intra-medioseptal infusions of a selective immunotoxin, 192-saporin, against cholinergic neurons or sterile saline were made in adult rats. Four days after infusions, hippocampal slices were made and LTP, whole cell, and single channel (AMPA or NMDA receptor) currents were recorded. Results demonstrated impairment in the induction and expression of LTP in lesioned rats. Lesioned rats also showed decreases in synaptic currents from CA1 pyramidal cells and synaptosomal single channels of AMPA and NMDA receptors. Our results suggest that MS cholinergic afferents modulate LTP and glutamatergic currents in the CA1 region of the hippocampus, providing a potential synaptic mechanism for the learning and memory deficits observed in the rodent model of selective MS cholinergic lesioning.
Gross anatomy is time consuming to teach and to learn. Because the process of dissection takes up so much student time, assistance in the form of an in-lab instructional DVD program might improve student performance. The DVD could be viewed with a portable device by individual dissection groups at their tables. Groups could dissect at their own pace, with access to step-by-step demonstrations and answers to frequently asked anatomical questions. We created an instructional DVD program demonstrating dissection of the canine ventral neck and thoracic limb. The effect on student exam scores of using the DVD versus not using it was measured in a controlled, two-sample study using incoming first-year veterinary students as volunteers. Volunteers were told the study was of two different dissection methods; the DVD was not specifically mentioned until after the students were separated into two groups (Blue/DVD group and Orange/No DVD group), and then only to volunteers in the Blue group. Except for the DVD, the two groups had the same resources. The difference in scores on an exam given after a single dissection period did not differ sufficiently to conclude that DVD use raised the mean score; however, 73% of the DVD group scored 60% or higher, while only 38% of the No DVD group scored 60% or higher. The difference in mean scores overall was 2.3 points out of a possible 49, suggesting that the DVD helped students, especially those with lower scores, to earn two to three more points than they would have otherwise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.