Some microbial public goods can provide both individual and community-wide benefits, and are open to exploitation by non-producing species. One such example is the production of metal-detoxifying siderophores. Here, we investigate whether heavy metals select for increased siderophore production in natural microbial communities, or whether exploitation of this detoxifying effect reduces siderophore production. We show that the proportion of siderophore-producing taxa increases along a natural heavy metal gradient. A causal link between metal contamination and siderophore production was subsequently demonstrated in a microcosm experiment in compost, in which we observed changes in community composition towards taxa that produce relatively more siderophores following copper contamination. We confirmed the selective benefit of siderophores by showing that taxa producing large amount of siderophores suffered less growth inhibition in toxic copper. Our results suggest that ecological selection will favour siderophore-mediated decontamination, with important consequences for potential remediation strategies.AuthorshipEH, SOB, AL, DJH, EvV, AB conceived and designed the experiment. DJH provided new perspectives. EH, SOB, FB, AL collected the data. EH, FB, NT, DJH carried out the data analyses. EH & AB wrote the first draft of the manuscript, and all authors contributed substantially
to revisions.Data accessibility:Upon acceptance, data presented in the manuscript will be made available on Dryad.
The results of a test of interlaboratory comparability for the determination of copper complexation capacity and copper-ligand complex formation constant are presented. Eight water samples comprising, six natural waters, a synthetic ligand solution and a blank solution were analysed by seven laboratories using their own methods of complexation titration. Given the wide variation that might have been possible, relatively good comparability was demonstrated amongst the variety of methods for determining copper complexation capacity. The complexation capacity data largely satisfied the predefined criterion of agreement to within 50%. This provides support for the use of metal speciation criteria in the regulation of copper in the environment. Data for the determination of complex formation constants were of poorer comparability, ranging between 10(7) and 10(12) for the same water.
Copper complexation capacity was determined in a range of sewage treatment works final effluents and receiving waters, upstream and downstream of the discharge point. Forty-eight-hour immobilization tests on Daphnia magna were used to assess the toxicity of copper in the effluent matrix. Complexation capacities in effluents were typically in the range 50 to 100 microg Cu/L, with higher values being found in the poorer-quality effluents with higher dissolved organic carbon (DOC) concentrations. The tolerance of Daphnia to dissolved copper concentrations was more than quadrupled in a 50% effluent matrix, with the increase in tolerance being related to complexation capacity. Ligand concentrations in effluents were found to correlate strongly with effluent DOC. No such relationship was observed in surface waters. On mixing with river water, sewage-derived ligands behaved conservatively and were relatively stable over time scales of up to 10 d.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.