Objective Eczema and food allergy start in infancy and have shared genetic risk factors that affect skin barrier. We aimed to evaluate whether skincare interventions can prevent eczema or food allergy. Design A prospectively planned individual participant data meta‐analysis was carried out within a Cochrane systematic review to determine whether skincare interventions in term infants prevent eczema or food allergy. Data sources Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase and trial registries to July 2020. Eligibility criteria for selected studies Included studies were randomized controlled trials of infants <1 year with healthy skin comparing a skin intervention with a control, for prevention of eczema and food allergy outcomes between 1 and 3 years. Results Of the 33 identified trials, 17 trials (5823 participants) had relevant outcome data and 10 (5154 participants) contributed to IPD meta‐analysis. Three of seven trials contributing to primary eczema analysis were at low risk of bias, and the single trial contributing to primary food allergy analysis was at high risk of bias. Interventions were mainly emollients, applied for the first 3–12 months. Skincare interventions probably do not change risk of eczema by age 1–3 years (RR 1.03, 95% CI 0.81, 1.31; I2=41%; moderate certainty; 3075 participants, 7 trials). Sensitivity analysis found heterogeneity was explained by increased eczema in a trial of daily bathing as part of the intervention. It is unclear whether skincare interventions increase risk of food allergy by age 1–3 years (RR 2.53, 95% CI 0.99 to 6.47; very low certainty; 996 participants, 1 trial), but they probably increase risk of local skin infections (RR 1.34, 95% CI 1.02, 1.77; I2=0%; moderate certainty; 2728 participants, 6 trials). Conclusion Regular emollients during infancy probably do not prevent eczema and probably increase local skin infections.
Background Eczema and food allergy are common health conditions that usually begin in early childhood and often occur in the same people. They can be associated with an impaired skin barrier in early infancy. It is unclear whether trying to prevent or reverse an impaired skin barrier soon after birth is effective for preventing eczema or food allergy. Objectives Primary objective To assess the effects of skin care interventions such as emollients for primary prevention of eczema and food allergy in infants. Secondary objective To identify features of study populations such as age, hereditary risk, and adherence to interventions that are associated with the greatest treatment benefit or harm for both eczema and food allergy. Search methods We performed an updated search of the Cochrane Skin Specialised Register, CENTRAL, MEDLINE, and Embase in September 2021. We searched two trials registers in July 2021. We checked the reference lists of included studies and relevant systematic reviews, and scanned conference proceedings to identify further references to relevant randomised controlled trials (RCTs). Selection criteria We included RCTs of skin care interventions that could potentially enhance skin barrier function, reduce dryness, or reduce subclinical inflammation in healthy term (> 37 weeks) infants (≤ 12 months) without pre‐existing eczema, food allergy, or other skin condition. Eligible comparisons were standard care in the locality or no treatment. Types of skin care interventions could include moisturisers/emollients; bathing products; advice regarding reducing soap exposure and bathing frequency; and use of water softeners. No minimum follow‐up was required. Data collection and analysis This is a prospective individual participant data (IPD) meta‐analysis. We used standard Cochrane methodological procedures, and primary analyses used the IPD dataset. Primary outcomes were cumulative incidence of eczema and cumulative incidence of immunoglobulin (Ig)E‐mediated food allergy by one to three years, both measured at the closest available time point to two years. Secondary outcomes included adverse events during the intervention period; eczema severity (clinician‐assessed); parent report of eczema severity; time to onset of eczema; parent report of immediate food allergy; and allergic sensitisation to food or inhalant allergen. Main results We identified 33 RCTs comprising 25,827 participants. Of these, 17 studies randomising 5823 participants reported information on one or more outcomes specified in this review. We included 11 studies, randomising 5217 participants, in one or more meta‐analyses (range 2 to 9 studies per individual meta‐analysis), with 10 of these studies providing IPD; the remaining 6 studies were included in the narrative results only. Most studies were con...
Background Missing data are common in randomised controlled trials (RCTs) and can bias results if not handled appropriately. A statistically valid analysis under the primary missing-data assumptions should be conducted, followed by sensitivity analysis under alternative justified assumptions to assess the robustness of results. Controlled Multiple Imputation (MI) procedures, including delta-based and reference-based approaches, have been developed for analysis under missing-not-at-random assumptions. However, it is unclear how often these methods are used, how they are reported, and what their impact is on trial results. This review evaluates the current use and reporting of MI and controlled MI in RCTs. Methods A targeted review of phase II-IV RCTs (non-cluster randomised) published in two leading general medical journals (The Lancet and New England Journal of Medicine) between January 2014 and December 2019 using MI. Data was extracted on imputation methods, analysis status, and reporting of results. Results of primary and sensitivity analyses for trials using controlled MI analyses were compared. Results A total of 118 RCTs (9% of published RCTs) used some form of MI. MI under missing-at-random was used in 110 trials; this was for primary analysis in 43/118 (36%), and in sensitivity analysis for 70/118 (59%) (3 used in both). Sixteen studies performed controlled MI (1.3% of published RCTs), either with a delta-based (n = 9) or reference-based approach (n = 7). Controlled MI was mostly used in sensitivity analysis (n = 14/16). Two trials used controlled MI for primary analysis, including one reporting no sensitivity analysis whilst the other reported similar results without imputation. Of the 14 trials using controlled MI in sensitivity analysis, 12 yielded comparable results to the primary analysis whereas 2 demonstrated contradicting results. Only 5/110 (5%) trials using missing-at-random MI and 5/16 (31%) trials using controlled MI reported complete details on MI methods. Conclusions Controlled MI enabled the impact of accessible contextually relevant missing data assumptions to be examined on trial results. The use of controlled MI is increasing but is still infrequent and poorly reported where used. There is a need for improved reporting on the implementation of MI analyses and choice of controlled MI parameters.
This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.