Considering that the nonlinear photoinduced phase shift to a Gaussian beam in a thin sample of nonlocal nonlinear media can be modeled as a Gaussian function to some real power the far-field can be calculated using the Fraunhofer integral. In this paper we calculate numerically this integral to obtain the on-axis intensity in a Z -scan experiment or the intensity pattern in a self-phase modulation experiment. Experimental results of samples under cw illumination are fitted using the model with a good correspondence between experimental and numerical results. The model presented is adequate to describe samples with any magnitude of the maximum nonlinear photoinduced phase shift of purely refractive local or nonlocal nonlinear thin media.
In this work we present a simple model that can be used to calculate the far field intensity distributions when a Gaussian beam cross a thin sample of nonlinear media but the response can be nonlocal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.