Antibiotic resistance is a growing global problem, with very few new compounds in development. Bacterial transcription is an underutilized target for antibiotics, which has been attributed to the similarity of the active site of RNA polymerases (RNAPs) across all domains of life and the ease with which resistance can arise through point mutation at multiple sites within this conserved region. In this study we have taken a rational approach to design a novel set of compounds that specifically target the formation of transcription initiation complexes by preventing the unique bacterial σ initiation factor from binding to RNAP. We have identified the region of RNAP to which these compounds bind and demonstrate that one compound, GKL003, has an inhibition constant in the low nanomolar range. This compound has activity against both Gram-positive and -negative organisms, including a community acquired methicillin-resistant strain of the major pathogen Staphylococcus aureus.
There are three stages of transcribing DNA into RNA. These stages are initiation, elongation and termination, and they are wellunderstood biochemically. However, despite the plethora of structural information made available on RNA polymerase in the last decade, little is available for RNA polymerase in complex with transcription elongation factors. To understand the mechanisms of transcriptional regulation, we describe the first structure, to our knowledge, for a bacterial RNA polymerase in complex with an essential transcription elongation factor. The resulting structure formed between the RNA polymerase and NusA from Bacillus subtilis provides important insights into the transition from an initiation complex to an elongation complex, and how NusA is able to modulate transcription elongation and termination.
RNA polymerase (RNAP) is an essential and highly conserved enzyme in all organisms. The process of transcription initiation is fundamentally different between prokaryotes and eukaryotes. In prokaryotes, initiation is regulated by r factors, making the essential interaction between r factors and RNAP an attractive target for antimicrobial agents. Our objective was to achieve the first step in the process of developing novel antimicrobial agents, namely to prove experimentally that the interaction between a bacterial RNAP and an essential r factor can be disrupted by introducing carefully designed mutations into r A of Bacillus subtilis. This disruption was demonstrated qualitatively by Far-Western blotting. Design of mutant rs was achieved by computer-aided visualization of the RNAP-r interface of the B. subtilis holoenzyme (RNAP 1 r) constructed using a homology modeling approach with published crystal structures of bacterial RNAPs. Models of the holoenzyme and the core RNAP were rigorously built, evaluated, and validated. To allow a high-quality RNAP-r interface model to be constructed for the design of mutations, a crucial error in the B. subtilis r A sequence in published databases at amino acid 165 had to be corrected first. The new model was validated through determination of RNAP-r interactions using targeted mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.