Humans are remarkably well tuned to the statistical properties of natural images. However, quantitative characterization of processing within the domain of natural images has been difficult because most parametric manipulations of a natural image make that image appear less natural. We used generative adversarial networks (GANs) to constrain parametric manipulations to remain within an approximation of the manifold of natural images. In the first experiment, 7 observers decided which one of two synthetic perturbed images matched a synthetic unperturbed comparison image. Observers were significantly more sensitive to perturbations that were constrained to an approximate manifold of natural images than they were to perturbations applied directly in pixel space. Trial by trial errors were consistent with the idea that these perturbations disrupt configural aspects of visual structure used in image segmentation. In a second experiment, 5 observers discriminated paths along the image manifold as recovered by the GAN. Observers were remarkably good at this task, confirming that observers were tuned to fairly detailed properties of an approximate manifold of natural images. We conclude that human tuning to natural images is more general than detecting deviations from natural appearance, and that humans have, to some extent, access to detailed interrelations between natural images.
Humans are remarkably well tuned to the statistical properties of natural images. However, quantitative characterization of processing within the domain of natural images has been difficult because most parametric manipulations of a natural image make that image appear less natural. We used generative adversarial networks (GANs) to constrain parametric manipulations to remain within an approximation of the manifold of natural images. In the first experiment, seven observers decided which one of two synthetic perturbed images matched a synthetic unperturbed comparison image. Observers were significantly more sensitive to perturbations that were constrained to an approximate manifold of natural images than they were to perturbations applied directly in pixel space. Trial-bytrial errors were consistent with the idea that these perturbations disrupt configural aspects of visual structure used in image segmentation. In a second experiment, five observers discriminated paths along the image manifold as recovered by the GAN. Observers were remarkably good at this task, confirming that observers are tuned to fairly detailed properties of an approximate manifold of natural images. We conclude that human tuning to natural images is more general than detecting deviations from natural appearance, and that humans have, to some extent, access to detailed interrelations between natural images.
Higher levels of visual processing are progressively more invariant to low-level visual factors such as contrast. Although this invariance trend has been well documented for simple stimuli like gratings and lines, it is difficult to characterize such invariances in images with naturalistic complexity. Here, we use a generative image model based on a hierarchy of learned visual features-a Generative Adversarial Networkto constrain image manipulations to remain within the vicinity of the manifold of natural images. This allows us to quantitatively characterize visual discrimination behaviour for naturalistically complex, non-linear image manipulations. We find that human tuning to such manipulations has a factorial structure. The first factor governs image contrast with discrimination thresholds following a power law with an exponent between 0.5 and 0.6, similar to contrast discrimination performance for simpler stimuli. A second factor governs image content with approximately constant discrimination thresholds throughout the range of images studied. These results support the idea that human perception factors out image contrast relatively early on, allowing later stages of processing to extract higher level image features in a stable and robust way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.