Macrophages become activated initiating innate immune responses. Depending on the signals, macrophages obtain an array of activation phenotypes, described by the broad terms of M1 or M2 phenotype. The PI3K/Akt/mTOR pathway mediates signals from multiple receptors including insulin receptors, pathogen-associated molecular pattern receptors, cytokine receptors, adipokine receptors, and hormones. As a result, the Akt pathway converges inflammatory and metabolic signals to regulate macrophage responses modulating their activation phenotype. Akt is a family of three serine-threonine kinases, Akt1, Akt2, and Akt3. Generation of mice lacking individual Akt, PI3K, or mTOR isoforms and utilization of RNA interference technology have revealed that Akt signaling pathway components have distinct and isoform-specific roles in macrophage biology and inflammatory disease regulation, by controlling inflammatory cytokines, miRNAs, and functions including phagocytosis, autophagy, and cell metabolism. Herein, we review the current knowledge on the role of the Akt signaling pathway in macrophages, focusing on M1/M2 polarization and highlighting Akt isoform-specific functions.
Activated macrophages are described as classically activated or M1 type and alternatively activated or M2 type, depending on their response to proinflammatory stimuli and the expression of genetic markers including iNOS, arginase1, Ym1, and Fizz1. Here we report that Akt kinases differentially contribute to macrophage polarization, with Akt1 ablation giving rise to an M1 and Akt2 ablation resulting in an M2 phenotype. Accordingly, Akt2 −/− mice were more resistant to LPS-induced endotoxin shock and to dextran sulfate sodium (DSS)-induced colitis than wild-type mice, whereas Akt1 −/− mice were more sensitive. Cell depletion and reconstitution experiments in a DSS-induced colitis model confirmed that the effect was macrophage-dependent. Gene-silencing studies showed that the M2 phenotype of Akt2 −/− macrophages was cell autonomous. The microRNA miR-155, whose expression was repressed in naive and in LPS-stimulated Akt2 −/− macrophages, and its target C/EBPβ appear to play a key role in this process. C/EBPβ, a hallmark of M2 macrophages that regulates Arg1, was up-regulated upon Akt2 ablation or silencing. Overexpression or silencing of miR-155 confirmed its central role in Akt isoform-dependent M1/M2 polarization of macrophages.inflammation | peritonitis | sepsis | inflammatory bowel disease A ctivated macrophages express proinflammatory factors and are known as classically activated or M1-type macrophages. Toll-like receptor (TLR) stimulation may induce the M1 phenotype through the activation of several signaling cascades, which regulate the induction of proinflammatory mediators such as TNF-α, IL-6, and iNOS. However, macrophages can also undergo alternative activation to become alternatively activated or M2-type macrophages. M2 macrophages are characterized by reduced responsiveness to TLR ligands, which results in the induction of low levels of proinflammatory cytokines and in the upregulation of arginase 1 (Arg1), IL-10, found in inflammatory zone 1 (Fizz1), and chitinase 3-like-3 (YM1/CHI3l3) (1). Although the molecular mechanisms that regulate M2 macrophage polarization are not well understood, it appears that STAT6 activation and the induction of C/EBPβ play a central role in this process (2-4). C/EBPβ regulates the expression of Arg1 (3), the gene that encodes the inducible arginase, and selective inhibition of C/EBPβ in macrophages blocks M2 polarization (4).Akt (also known as PKB) is a family of three serine/threonine protein kinases (Akt1, Akt2, and Akt3) that regulate a host of cellular functions, including cell survival, proliferation, differentiation, and intermediary metabolism (5-7). Even though the majority of the literature does not make a distinction between different Akt isoforms, there is a growing list of differences between them. Akt1 appears not to be dispensable for eNOS induction and endothelial cell function (8, 9), whereas Akt2 is not dispensable for insulin signaling (10). Deletion of Akt1 resulted in enhanced atherosclerosis in the APOE −/− mouse model (5), and Akt1 −/− mice do not d...
Acute respiratory distress syndrome (ARDS) is a major cause of respiratory failure, with limited effective treatments available. Alveolar macrophages participate in the pathogenesis of ARDS. To investigate the role of macrophage activation in aseptic lung injury and identify molecular mediators with therapeutic potential, lung injury was induced in wild-type (WT) and Akt2−/− mice by hydrochloric acid aspiration. Acid-induced lung injury in WT mice was characterized by decreased lung compliance and increased protein and cytokine concentration in bronchoalveolar lavage fluid. Alveolar macrophages acquired a classical activation (M1) phenotype. Acid-induced lung injury was less severe in Akt2−/− mice compared with WT mice. Alveolar macrophages from acid-injured Akt2−/− mice demonstrated the alternative activation phenotype (M2). Although M2 polarization suppressed aseptic lung injury, it resulted in increased lung bacterial load when Akt2−/− mice were infected with Pseudomonas aeruginosa. miR-146a, an anti-inflammatory microRNA targeting TLR4 signaling, was induced during the late phase of lung injury in WT mice, whereas it was increased early in Akt2−/− mice. Indeed, miR-146a overexpression in WT macrophages suppressed LPS-induced inducible NO synthase (iNOS) and promoted M2 polarization, whereas miR-146a inhibition in Akt2−/− macrophages restored iNOS expression. Furthermore, miR-146a delivery or Akt2 silencing in WT mice exposed to acid resulted in suppression of iNOS in alveolar macrophages. In conclusion, Akt2 suppression and miR-146a induction promote the M2 macrophage phenotype, resulting in amelioration of acid-induced lung injury. In vivo modulation of macrophage phenotype through Akt2 or miR-146a could provide a potential therapeutic approach for aseptic ARDS; however, it may be deleterious in septic ARDS because of impaired bacterial clearance.
Obesity and insulin resistance influences metabolic processes, but whether it affects macrophage metabolism is not known. In this study, we demonstrate that chronic exposure of macrophages to insulin either in culture or in vivo in diet-induced, glucose-intolerant mice rendered them resistant to insulin signals marked by failure to induce Akt2 phosphorylation. Similarly, macrophages lacking Akt2 or IGF1 receptor were also resistant to insulin signals. Insulin-resistant macrophages had increased basal mTORC1 activity, possessed an M2-like phenotype, and reduced LPS responses. Moreover, they exhibited increased glycolysis and increased expression of key glycolytic enzymes. Inhibition of mTORC1 reversed the M2-like phenotype and suppressed glycolysis in insulin-resistant macrophages. In the context of polymicrobial sepsis, mice harboring insulin-resistant macrophages exhibited reduced sepsisinduced lung injury. Thus, macrophages obtain resistance to insulin characterized by increased glycolysis and a unique M2-like phenotype, termed M-insulin resistant, which accounts for obesity-related changes in macrophage responses and a state of trained immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.